Skip to main content
Log in

Thermal analysis of structural phase transition behavior of Ln2Ni1−xCuxO4+δ (Ln = Nd, Pr) under various oxygen partial pressures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Structural phase transition behavior between orthorhombic and tetragonal in Ln2Ni1−xCuxO4+δ (Ln = Nd, Pr), which attracts interest as new cathode material for solid oxide fuel cells, has been investigated with thermal analysis under controlled oxygen partial pressures (P(O2)). For Nd2Ni1−xCuxO4+δ with 0.0 ≤ x ≤ 0.1, temperature, enthalpy change (ΔH) and change in excess oxygen content (Δδ) at the phase transition decreased with increasing Cu content. The phase transition temperature decreased with decreasing P(O2), whereas little variation was observed in ΔH and Δδ. For Nd2Ni1−xCuxO4+δ with x ≥ 0.15, crystal structure was tetragonal and no phase transition was detected below 750 °C. For Pr2Ni1−xCuxO4+δ with x = 0.0 and 0.1, phase transition was observed by DSC, showing similar dependence of phase transition temperature and ΔH on Cu content and P(O2) with that of Nd2Ni1−xCuxO4+δ. Δδ was not detected in TG curve of Pr2Ni0.9Cu0.1O4+δ, which could be attributed to too small Δδ. From Ellingham diagram prepared using temperature and P(O2) at the phase transition, variation of standard enthalpy (ΔH°) and standard entropy (ΔS°) was evaluated. It was revealed that variation of phase transition temperature by Cu content and difference of the phase transition temperature between Nd2Ni1−xCuxO4+δ and Pr2Ni1−xCuxO4+δ showed correspondence with variation of ΔH°. Excess oxygen content, δ, in Nd2Ni1−xCuxO4+δ, evaluated with reduction in TG apparatus, decreased with increasing Cu content. It was suggested that some amount of δ was required for stabilization of orthorhombic phase and that low δ by Cu substitution stabilized the tetragonal structure of the specimens with x ≥ 0.15.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Ishihara T. Oxide ion conductivity in defect perovskite, Pr2NiO4 and its application for solid oxide fuel cells. J Ceram Soc JPN. 2014;122:179–86.

    Article  CAS  Google Scholar 

  2. Lalane C, Mauvy F, Siebert E, Fontaine ML, Bassat JM, Ansart F, Stevens P, Grenier JC. Intermediate temperature SOFC single cell test using Nd1.95NiO4+δ as cathode. J Eur Ceram Soc. 2007;27:4195–8.

    Article  CAS  Google Scholar 

  3. Mauvy F, Lalane C, Bassat JM, Grenier JC, Zhao H, Dordor P, Stevens Ph. Oxygen reduction on porous Ln2NiO4+δ electrodes. J Eur Ceram Soc. 2005;25:2669–72.

    Article  CAS  Google Scholar 

  4. Boehm E, Bassat JM, Dordor P, Mauvy F, Grenier JC, Stevens Ph. Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4+δ oxides. Solid State Ionics. 2005;176:2717–25.

    Article  CAS  Google Scholar 

  5. Ogier T, Mauvy F, Bassat JM, Laurencin J, Mougin J, Grenier JC. Overstoichiometric oxides Ln2NiO4+δ (Ln = La, Pr or Nd) as oxygen anodic electrodes for solid oxide electrolysis application. Int J Hydrogen Energy. 2015;40:15885–92.

    Article  CAS  Google Scholar 

  6. Chauveau F, Mougin J, Bassat JM, Mauvy F, Grenier JC. A new anode material for solid oxide electrolyser: the neodymium nickelate Nd2NiO4+δ. J Power Sources. 2010;195:744–9.

    Article  CAS  Google Scholar 

  7. Zhou XD, Templeton JW, Nie Z, Chen H, Stevenson JW, Pederson LR. Electrochemical performance and stability of the cathode for solid oxide fuel cells: V. high performance and stable Pr2NiO4 as the cathode for solid oxide fuel cells. Electrochim Acta. 2012;71:44–9.

    Article  CAS  Google Scholar 

  8. Dogdibegovic E, Templeton J, Yan J, Stevenson JW, Zhou XD. Compatibility of praseodymium nickelate with various cathode current collectors and electrolytes. ECS Trans. 2013;57:1761–70.

    Article  CAS  Google Scholar 

  9. Nakamura T, Yashiro K, Sato K, Mizusaki J. Oxygen nonstoichiometry and chemical stability of Nd2−xSrxNiO4+δ. J Solid State Chem. 2009;182:1533–7.

    Article  CAS  Google Scholar 

  10. Nakamura T, Yashiro K, Sato K, Mizusaki J. Thermally-induced and chemically-induced structural changes in layered perovskite-type oxides Nd2−xSrxNiO4+δ (x = 0, 0.2, 0.4). Solid State Ionics. 2010;181:402–11.

    Article  CAS  Google Scholar 

  11. Niwa E, Wakai K, Hori T, Nakamura T, Yashiro K, Mizusaki J, Hashimoto T. Analysis of structural phase transition behavior of Ln2NiO4+δ (Ln: Nd, Pr) with variation of oxygen content. Solid State Ionics. 2014;262:724–7.

    Article  CAS  Google Scholar 

  12. Niwa E, Nakamura T, Mizusaki J, Hashimoto T. Analysis of structural phase transition of Nd2NiO4+δ by scanning thermal measurement under controlled oxygen partial pressure. Thermochim Acta. 2011;523:46–50.

    Article  CAS  Google Scholar 

  13. Niwa E, Wakai K, Hori T, Yashiro K, Mizusaki J, Hashimoto T. Thermodynamic analyses of structural phase transition of Pr2NiO4+δ involving variation of oxygen content. Thermochim Acta. 2014;575:129–34.

    Article  CAS  Google Scholar 

  14. Flura A, Dru S, Nicollet C, Vilbu V, Fourcade S, Lebraud E, Rougier A, Bassat JM, Grenier JC. Chemical and structural changes in Ln2NiO4+δ (Ln = La, Pr or Nd) lanthanide nickelates as a function of oxygen partial pressure at high temperature. J Solid State Chem. 2015;228:189–98.

    Article  CAS  Google Scholar 

  15. Fernández-Díaz MT, Martínez JL, Rodríguez-Carvajal J. High-temperature phase transformation of oxidized R2NiO4+δ (R = La, Pr and Nd) under vacuum. Solid State Ionics. 1993;63–65:902–6.

    Article  Google Scholar 

  16. Miyoshi S, Furuno T, Sangoanruang O, Matsumoto H, Ishihara T. Mixed conductivity and oxygen permeability of doped Pr2NiO4-based oxides. J Electrochem Soc. 2007;154:B57–62.

    Article  CAS  Google Scholar 

  17. Ishihara T, Nakashima K, Okada S, Enoki M, Matsumoto H. Defect chemistry and oxygen permeation property of Pr2Ni0.75Cu0.25O4 oxide doped with Ga. Solid State Ionics. 2008;179:1367–71.

    Article  CAS  Google Scholar 

  18. Wang Y, Cheng J, Jiang Q, Yang J, Gao J. Preparation and electrochemical performance of Pr2Ni0.6Cu0.4O4 cathode materials for intermediate-temperature solid oxide fuel cells. J Power Sources. 2011;196:3104–8.

    Article  CAS  Google Scholar 

  19. Zheng K, Świerczek K. Evaluation of La2Ni0.5Cu0.5O4+δ and Pr2Ni0.5Cu0.5O4+δ Ruddlesden-Popper-type layered oxides as cathode materials for solid oxide fuel cells. Mater Res Bull. 2016;84:259–66.

    Article  CAS  Google Scholar 

  20. Kovalevsky AV, Kharton VV, Yaremchenko AA, Pivak YV, Tsipis EV, Yakovlev SO, Markov AA, Naoumovich EN, Frade JR. Oxygen permeability, stability and electrochemical behavior of Pr2NiO4+δ based materials. J Electroceram. 2007;18:205–18.

    Article  CAS  Google Scholar 

  21. Wang CK, Soga H, Hayashi T, Morise T, Niwa E, Hashimoto T. Preparation of structural phase diagram of Nd2Ni1−xCuxO4+δ as new cathode materials -clarification of existence of miscibility gap. ECS Trans. 2017;78:603–12.

    Article  CAS  Google Scholar 

  22. Soga H, Wang CK, Hayashi T, Morise T, Niwa E, Hashimoto T. Preparation of structural phase diagram of Ln2Ni1−xCuxO4+δ (Ln = La, Pr, Nd, Sm, Eu) as new cathode materials –variation of structural phase diagram on kin of Ln. ECS Trans. 2017;78:613–22.

    Article  CAS  Google Scholar 

  23. Odier P, Allançon Ch, Bassat JM. Oxygen exchange in Pr2NiO4+δ at high temperature and direct formation of Pr4Ni3O10−x. J Solid State Chem. 2000;153:381–5.

    Article  CAS  Google Scholar 

  24. Kovalevsky AV, Kharton VV, Yaremchenko AA, Pivak YV, Naoumovich EN, Frade JR. Stability and oxygen transport properties of Pr2NiO4+δ ceramics. J Eur Ceram Soc. 2007;27:4269–72.

    Article  CAS  Google Scholar 

  25. Sullivan JD, Buttrey DJ, Cox DE, Hriljac J. A conventional and high-resolution synchrotron X-ray diffraction study of phase separations in Pr2NiO4+δ. J Solid State Chem. 1991;84:337–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Hashimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, M., Wang, C., Okiba, T. et al. Thermal analysis of structural phase transition behavior of Ln2Ni1−xCuxO4+δ (Ln = Nd, Pr) under various oxygen partial pressures. J Therm Anal Calorim 135, 2765–2774 (2019). https://doi.org/10.1007/s10973-018-7621-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7621-0

Keywords

Navigation