Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2247–2254 | Cite as

Measurement of vaporization enthalpy for amino acid ionic liquids [Cnmim][Thr](n = 3, 5) using the isothermogravimetrical analysis

  • Lu Liu
  • Li-Qiang Jing
  • Hai-Chun Liu
  • Da-Wei Fang
  • Jing TongEmail author
Article
  • 44 Downloads

Abstract

The amino acid ionic liquids (AAILs) [Cnmim][Thr](n = 3, 5) were prepared, and their structures were confirmed by NMR spectroscopy and element analysis. The evaporation enthalpy of AAILs [Cnmim][Thr](n = 3, 5) and the sublimation enthalpy of benzoic acid were determined by the isothermogravimetrical analysis at their average temperature, respectively. Using Verevkin’s method, the difference of heat capacities between the vapor phase and the liquid phase, \(\Delta^{\text{g}} _{\text{l}} C_{\text{p}} ^{\text{o}} {}_{\text{m}}\), for AAILs [Cnmim][Thr](n = 3, 5) was calculated and in terms of \(\Delta^{\text{g}} _{\text{l}} C_{\text{p}}^{\text{o}} {}_{\text{m}}\), \(\Delta^{\text{g}} _{\text{l}} H^{\text{o}} _{\text{m}} \left({T_{\text{av}}} \right)\) can be transformed into \(\Delta^{\text{g}} _{\text{l}} H^{\text{o}} _{\text{m}} \left(T \right)\) at different temperatures, T, where the evaporation enthalpy, \(\Delta^{\text{g}} _{\text{l}} H^{\text{o}} _{\text{m}}\)(298.15), at 298.15 K was included. The difference between the value of \(\Delta^{\text{g}} _{\text{l}} H^{\text{o}} _{\text{m}}\)(298.15) and the corresponding one predicted by Tong’s model is less than the experimental error of 3.0 kJ mol−1, so that it is shown that the model has some reasonableness. According to Rebelo et al., the hypothetical normal boiling point, Tb, was estimated so that the vaporization entropy, \(\Delta^{\text{g}} _{\text{l}} S\)(Tb) was estimated also. In terms of \(\Delta^{\text{g}} _{\text{l}} C_{\text{p}}^{\text{o}} {}_{\text{m}}\), the vaporization entropy, \(\Delta^{\text{g}} _{\text{l}} S\left(T \right)\) and the evaporation Gibbs free energy, \(\Delta^{\text{g}} _{\text{l}} G^{\text{o}} _{\text{m}} \left(T \right)\), of the AAILs were determined at different temperatures. The results show that \(\Delta^{\text{g}} _{\text{l}} G^{\text{o}} _{\text{m}} \left(T \right)\) decreases with the temperature rise until the boiling point temperature is zero, and \(\Delta^{\text{g}} _{\text{l}} S\left(T \right)\) increases with the temperature rise until Tb is the maximum so that this indicted that the vaporization entropy is the driving force of the evaporation process of AAIL [Cnmim][Thr](n = 3, 5).

Keywords

Ionic liquid Isothermogravimetrical analysis Enthalpy of vaporization Threonine 

Notes

Acknowledgements

This project was supported by NSFC (21773100, 21673107 and 21373005).

Supplementary material

10973_2018_7607_MOESM1_ESM.doc (1.3 mb)
Supplementary material 1 (DOC 1341 kb)

References

  1. 1.
    Wei J, Li Z, Gu C, Pan Y, Xing NN, Tong J, Guan W. Determination of vaporization enthalpy for ionic liquids [Cnmim][Lact](n = 2, 3, 5) and applications of the molar Gibbs free energy. J Therm Anal Calorim. 2016;125:547–56.CrossRefGoogle Scholar
  2. 2.
    Zhang MQ, Groves R, Counce RM, Watson JS, Zawodzinski TA. Melting/freezing points of high concentrations of AlCl3 in a saturated chloroaluminate ionic liquid. J Therm Anal Calorim. 2016;124:395–8.CrossRefGoogle Scholar
  3. 3.
    Zheng L, Bu XX, Fan BH, Wei J, Xing NN, Guan W. Study on thermodynamic property for ionic liquid [C4mim][Lact](1-butyl-3-methylimidazolium lactic acid). J Therm Anal Calorim. 2016;123:1619–25.CrossRefGoogle Scholar
  4. 4.
    Zhang ZH, Tan ZC, Li YS, Sun LX. Thermodynamic investigation of room temperature ionic liquid: heat capacity and thermodynamic functions of BMIBF4. J Therm Anal Calorim. 2006;85:551–7.CrossRefGoogle Scholar
  5. 5.
    Li Y, Fang HG, Zhang D, Bahader A, Zhen B, Xu P, Ding YS. Synergetic effects of PEG arm and ionic liquid moiety contained in the tri-arm star-shaped oligomer on the crystallization behaviors of poly(lactic acid). J Therm Anal Calorim. 2016;125:849–60.CrossRefGoogle Scholar
  6. 6.
    Usula M, Plechkova NV, Piras A, Porcedda S. Ethylammonium alkanoate-based ionic liquid + water mixtures A calorimetric and volumetric study at 298.15 K. J Therm Anal Calorim. 2015;121:1129–37.CrossRefGoogle Scholar
  7. 7.
    Navarro P, Larriba M, Beigbeder JB, Garcia J, Rodriguez F. Thermal stability and specific heats of [bpy][BF4] + [bpy][Tf2 N] and [bpy][BF4] + [4bmpy][Tf2 N] mixed ionic liquid solvents. J Therm Anal Calorim. 2015;119:1235–43.CrossRefGoogle Scholar
  8. 8.
    Amarasekara AS, Owereh OS. Thermal properties of sulfonic acid group functionalized Bronsted acidic ionic liquids. J Therm Anal Calorim. 2011;103:1027–243.CrossRefGoogle Scholar
  9. 9.
    Keating MY, Gao F, Ramsey JB. TGA-MS study of the decomposition of phosphorus-containing ionic liquids trihexyl(tetradecyl)phosphonium decanoate and trihexyltetradecylphosphonium bis[(trifluoromethyl)sulfonyl] amide. J Therm Anal Calorim. 2011;106:207–11.CrossRefGoogle Scholar
  10. 10.
    Feng WQ, Lu YH, Chen Y, Lu YW, Yang T. Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J Therm Anal Calorim. 2016;125:143–54.CrossRefGoogle Scholar
  11. 11.
    Tao GH, He L, Liu WS, Xu L, Xiong W, Wang T, Kou Y. Preparation, characterization and application of amino acid-based green ionic liquids. Green Chem. 2006;8:639–46.CrossRefGoogle Scholar
  12. 12.
    Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acid. J Am Chem Soc. 2005;127:2398–9.CrossRefGoogle Scholar
  13. 13.
    Zhang S, Wang J, Lu X, Zhou Q. Structures and interactions of ionic liquids. Heidelberg: Springer; 2014.CrossRefGoogle Scholar
  14. 14.
    Fang DW, Tong J, Guan W, Wang H, Yang JZ. Predicting properties of amino acid ionic liquid homologue of 1-Alkyl-3-methylimidazolium glycine. J Phys Chem B. 2010;114:13808–14.CrossRefGoogle Scholar
  15. 15.
    Tong J, Song B, Wang CX, Li L, Guan W, Fang DW, Yang JZ. Prediction of the physicochemical properties of valine ionic liquids [Cnmim][Val] (n = 2, 3, 4, 5, 6) by semiempirical methods. Ind Eng Chem Res. 2011;50:2418–23.CrossRefGoogle Scholar
  16. 16.
    Earle MJ, Esperanc JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA. The distillation and volatility of ionic liquids. Nature. 2006;439:831–4.CrossRefGoogle Scholar
  17. 17.
    Deyko A, Lovelock KR, Corfield JA, Taylor AW, Gooden PN, Villar-Garcia IJ, Licence P, Jones RG, Krasovskiy VG, Chernikova EA, Kustov LM. Measuring and predicting Delta(vap)H298 values of ionic liquids. Phys Chem Chem Phys. 2009;11:8544–55.CrossRefGoogle Scholar
  18. 18.
    Esperanc JMSS, Lopes JNC, Tariq M, Santos LMNBF, Magee JW, Rebelo LPN. Volatility of aprotic ionic liquids—a review. J Chem Eng Data. 2010;55:3–12.CrossRefGoogle Scholar
  19. 19.
    Zaitsau DH, Kabo GJ, Strechan AA, Paulechka YU, Tschersich A, Verevkin SP, Heintz A. Experimental vapor pressures of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides and a correlation scheme for estimation of vaporization enthalpies of ionic liquids. J Chem Phys A. 2006;110:7303–6.CrossRefGoogle Scholar
  20. 20.
    Luo H, Baker GA, Dai S. Isothermogravimetric determination of the enthalpies of vaporization of 1-alkyl-3-methylimidazolium ionic liquids. J Chem Phys B. 2008;112:10077–81.CrossRefGoogle Scholar
  21. 21.
    Heym F, Etzold BJM, Kern C, Jess A. Analysis of evaporation and thermal decomposition of liquids by thermogravimetrical analysis at ambient pressure and high vacuum. Green Chem. 2011;13:1453–66.CrossRefGoogle Scholar
  22. 22.
    Verevkin SP, Ralys RV, Zaitsau DH, Emel’yanenko VN, Schick C. Express thermo-gravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochim Acta. 2012;538:55–62.CrossRefGoogle Scholar
  23. 23.
    Tong J, Yang HX, Liu RJ, Li C, Xia LX, Yang JZ. Determination of the enthalpy of vaporization and prediction of surface tension for ionic liquid 1-Alkyl-3-methylimidazolium propionate [Cnmim][Pro](n = 4, 5, 6). J Phys Chem B. 2014;118:12972–8.CrossRefGoogle Scholar
  24. 24.
    Hong M, Liu RJ, Yang HX, Guan W, Tong J, Yang JZ. Determination of the vaporization enthalpies and estimation of the polarity for 1-alkyl-3-methylimidazolium propionate [Cnmim][Pro](n = 2, 3) ionic liquids. J Chem Thermodyn. 2014;70:214–8.CrossRefGoogle Scholar
  25. 25.
    PRC National Standard Methods for pretreating ion exchange resins, GB 5476-85, 1985.Google Scholar
  26. 26.
    Stewart LN. In: McAdie HG, editors. Proceedings of the third Toronto symposium on thermal analysis. Toronto: Chemical Institute of Canada; February 25–26, 1969. p. 205.Google Scholar
  27. 27.
    Hinks D, Rafiq MI, Price DM, Montero GA, Smith B. A comparison of vapour pressure measurements of quinizarin and leucoquinizarin via transpiration and thermogravimetry. Color Technol. 2003;119:84–90.CrossRefGoogle Scholar
  28. 28.
    Price DM. Vapor pressure determination by thermogravimetry. Thermochim Acta. 2001;367:253–62.CrossRefGoogle Scholar
  29. 29.
    Verevkin SP, Zaitsau DH, Emel’yanenko VN, Yermalayeu AV. Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data. J Phys Chem B. 2013;117:6473–86.CrossRefGoogle Scholar
  30. 30.
    Zaitsau DH, Yernalayeu AV, Emel’yanenko VN, Verevkin SP, Welz-Biermann U, Schubert T. Structure-property relationships in ILs: A study of the alkyl chain length dependence in vaporisation enthalpies of pyridinium based ionic liquids. Sci China Chem. 2012;55:1526–31.CrossRefGoogle Scholar
  31. 31.
    Paulechka YU, Zaitsau DH, Kabo GJ. On the difference between isobaric and isochoric heat capacities of liquid cyclohexyl esters. J Mol Liq. 2004;115:105–11.CrossRefGoogle Scholar
  32. 32.
    Zhang D, Qu Y, Gong YY, Tong J, Fang DW, Tong J. Physicochemical properties of [Cnmim][Thr] (n = 3, 5, 6) amino acid ionic liquids. J Chem Thermodyn. 2017;115:47–51.CrossRefGoogle Scholar
  33. 33.
    Archer DG, Widegren JA, Kirklin DR, Magee JW. Enthalpy of solution of 1-Octyl-3-methylimidazolium tetrafluoroborate in water and in aqueous sodium fluoride. J Chem Eng Data. 2005;50:1484–91.CrossRefGoogle Scholar
  34. 34.
    Chickos JS, Hosseini S, Hesse DG, Liebman JF. Heat capacity corrections to a standard state: a comparison of new and some literature methods for organic liquids and solids. Struct Chem. 1993;4:271–8.CrossRefGoogle Scholar
  35. 35.
    Tong J, Liu L, Li H, Guan W, Chen X. Measurement and estimation of the vaporization enthalpy for amino acid ionic liquids [Cnmim][Thr](n = 2, 4). J Chem Thermodyn. 2017;112:293–8.CrossRefGoogle Scholar
  36. 36.
    Rebelo LPN, Lopes JNC, Esperancüa JMSS, Filipe E. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids. J Phys Chem B. 2005;109:6040–3.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Lu Liu
    • 1
  • Li-Qiang Jing
    • 1
  • Hai-Chun Liu
    • 1
  • Da-Wei Fang
    • 2
  • Jing Tong
    • 1
    Email author
  1. 1.College of ChemistryLiaoning UniversityShenyangPeople’s Republic of China
  2. 2.Institute of Rare and Scattered Elements ChemistryLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations