Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2241–2246 | Cite as

Determination of adsorption heat of two boron-containing microporous materials in some organic solvents by microcalorimetry

  • Sa-Ying LiEmail author
  • Pan Liang
Article
  • 43 Downloads

Abstract

Microporous materials have adsorptive property because of their pore structures. In this paper, the adsorption heat of two boron-containing microporous materials for M2[Ga(B5O10)]·4H2O (M = K, Rb) in some organic solvents was measured at 298.15 K by using microcalorimeter. The results indicate that the larger the pore size, the higher is the heat of adsorption and the higher is the adsorption capacity. In addition, the thermokinetics of adsorption process of K2[Ga(B5O10)]·4H2O in methanol was also studied. Applying thermokinetic model, thermokinetic parameters including rate constants k, reaction order n, activation energy Ea, and pre-exponential factor A for the adsorption process were simultaneously acquired.

Keywords

Microporous materials Adsorption heat In situ microcalorimetry Thermokinetics 

Notes

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No. 21173143). The authors thank the guidance of Prof. Zhi-Hong Liu, Shaanxi Normal University, P. R. China.

References

  1. 1.
    Cheetham A, Ferey K, Loiseau GT. Open-framework inorganic materials. Angew Chem Int Ed. 1999;38:3268–92.CrossRefGoogle Scholar
  2. 2.
    Liu ZH, Yang P, Li P. K2[Ga(B5O10)]·4H2O: the first chiral zeolite-like galloborate with large odd 11-ring channels. Inorg Chem. 2007;46:2965–7.CrossRefGoogle Scholar
  3. 3.
    Li SY, Yang P, Liu ZH. Synthesis, characterization, and thermochemical properties of a microporous crystal material for Rb2[Ga(B5O10)]·4H2O. J Chem Eng Data. 2012;57:1964–9.CrossRefGoogle Scholar
  4. 4.
    Navrotsky A, Trofymluk O, Levchenko AA. Thermochemistry of microporous and mesoporous materials. Chem Rev. 2009;109:3885–902.CrossRefGoogle Scholar
  5. 5.
    Huang PP, Zhao JJ, Liu ZH. Standard molar enthalpies of formation for a series of microporous crystals of Na2[MIIB3P2O11(OH)]·0.67H2O (MII = Mg, Mn, Fe Co, Ni, Cu, Zn). J Chem Thermodyn. 2012;55:213–7.CrossRefGoogle Scholar
  6. 6.
    Lv Y, Li N, Tang M, Liu ZH. Thermodynamic properties of microporous crystals for two hydrated aluminoborates, K2[Al(B5O10)]·4H2O and (NH4)2[Al(B5O10)]·4H2O. J Chem Thermodyn. 2013;58:129–33.CrossRefGoogle Scholar
  7. 7.
    Kang QY, Song Q, Li SY, Liu ZH. Thermodynamic properties of microporous materials for two borophosphates, K[ZnBP2O8] and NH4[ZnBP2O8]. J Chem Thermodyn. 2014;69:43–7.CrossRefGoogle Scholar
  8. 8.
    Liang P, Kang QY, Du L, Liu ZH. Thermochemical properties for a series of microporous borophosphates of MI[ZnBP2O8] (MI = Na, K, Rb, Cs). J Chem Thermodyn. 2014;76:24–8.CrossRefGoogle Scholar
  9. 9.
    Duh YS, Kao CS, William Lee WL. Chemical kinetics on thermal decompositions of di-tert-butyl peroxide studied by calorimetry. J Therm Anal Calorim. 2017;127:1071–87.CrossRefGoogle Scholar
  10. 10.
    Aghili S, Panjepour M, Meratian M. Kinetic analysis of formation of boron trioxide from thermal decomposition of boric acid under non-isothermal conditions. J Therm Anal Calorim. 2018;131:2443–55.CrossRefGoogle Scholar
  11. 11.
    Erceg M, Krešić I, Jakić M, Andričić B. Kinetic analysis of poly(ethylene oxide)/lithium montmorillonite nanocomposites. J Therm Anal Calorim. 2017;127:789–97.CrossRefGoogle Scholar
  12. 12.
    Mateescu M, Budiul M, Albu P, Vlase G, Vlase T. Thermal behavior and kinetic study of degradation for adamantan-2-one versus memantine hydrochloride. J Therm Anal Calorim. 2017;130:391–6.CrossRefGoogle Scholar
  13. 13.
    Huang AC, Chuang YK, Huang CF, Shu CM. Thermokinetic analysis of the stability of malic and salicylic acids in cosmeceutical formulations containing metal oxides. J Therm Anal Calorim. 2018;132:165–72.CrossRefGoogle Scholar
  14. 14.
    Yang HC, Lee SY, Choi YC, Yang IH, Chung DY. Thermokinetic analysis of spent ion-exchange resins for the optimization of carbonization reactor condition. J Therm Anal Calorim. 2017;127:587–95.CrossRefGoogle Scholar
  15. 15.
    Ji M, Liu MY, Gao SL, Shi QZ. A new microcalorimeter for measuring thermal effects. Instrum Sci Technol. 2001;29:53–7.CrossRefGoogle Scholar
  16. 16.
    Li LQ, Song Q, Li P, Huang HS, Liu ZH. Synthesis, characterization, and thermochemical property of a novel mixed alkali metal borate: NaCs[B10O14(OH)4]. J Therm Anal Calorim. 2014;116:1019–25.CrossRefGoogle Scholar
  17. 17.
    Gao YH, Liu ZH. Hydrothermal synthesis and thermodynamic properties of 2ZnO·3B2O3·3H2O. J Chem Thermodyn. 2009;41:775–8.CrossRefGoogle Scholar
  18. 18.
    Gao SL, Chen SP, Hu RZ, Li HY, Shi QZ. Derivation and application of thermodynamic equations. Chin J Inorg Chem. 2002;18:362–6 (in Chinese).Google Scholar
  19. 19.
    Wang XL, Xia ZQ, Wei W, Xie G, Chen SP, Gao SL. Synthesis, structure, and thermodynamics of a lanthanide coordination compound incorporating 5-nitroisophthalic acid. J Chem Thermodyn. 2012;55:124–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical EngineeringShaanxi Xueqian Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations