Skip to main content
Log in

Effect of solution pH on complex formation between epi-type catechin and β-cyclodextrin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The effect of solution pH on the formation of an inclusion complex between (−)-epigallocatechin gallate (EGCg: pKa = 7.5) and β-cyclodextrin (β-CD) was investigated by isothermal titration calorimetry and 1H-NMR spectroscopy. The formation of an inclusion complex (EGCg-β-CD) depended on the solution pH; two different types of inclusion complexes were formed at 1:1 molar ratio in acid/neutral solutions, and only one type of complex was formed in the basic solution. The first type of EGCg-β-CD with larger association constant was formed independently of pH, with the AC-ring of EGCg being deeply inserted into the cavity of β-CD and the B-ring existing near the secondary hydroxyl group of β-CD. On the other hand, the formation of the second type depended on the solution pH. The B′-ring of EGCg was included in the case of acid and neutral solutions, but the formation of an inclusion complex in the basic solution was difficult due to the ionization of the 4″-OH on the B′-ring. 1H-NMR spectroscopy supported these results. These results suggested that when determining the structures of EGCg-β-CD in an aqueous solution, it is necessary to consider unionized and ionized forms of EGCg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ikeda H, Moriwaki H, Matsubara T, Yukawa M, Iwase Y, Yukawa E, Aki H. Mechanism of interaction between risperidone and tea catechin (2) influence of presence of galloyl group in catechin on insoluble complex formation with risperidone. Yakugaku Zasshi. 2012;132:145–53.

    Article  CAS  PubMed  Google Scholar 

  2. Inoue MB, Inoue M, Fernando Q, Valcic S, Timmermann BN. Potentiometric and 1H NMR studies of complexation of Al3+ with (−)-epigallocatechin gallate, a major active constituent of green tea. J Inorg Biochem. 2002;88:7–13.

    Article  CAS  PubMed  Google Scholar 

  3. Okumura H, Ichitani M, Takihara T, Kunimoto K. Facile quantitative analysis of gallated catechins in tea beverage by UV absorption spectra. Jpn J Food Chem. 2007;14:128–33.

    CAS  Google Scholar 

  4. Ohata T, Ikeda H, Inenaga M, Mizobe T, Yukawa M, Fujisawa M, Aki H. Drug-tea polyphenol interaction (II) complexation of piperazine derivatives with green tea polyphenol. Thermochim Acta. 2017;653:1–7.

    Article  CAS  Google Scholar 

  5. Ikeda H, Tsuji E, Matsubara T, Yukawa M, Fujisawa M, Yukawa E, Aki H. Incompatibility between propericiazine oral solution and tea-based drink. Chem Pharm Bull. 2012;60:1207–11.

    Article  CAS  PubMed  Google Scholar 

  6. Yokozawa T, Cho EJ, Hara Y, Kitani K. Antioxidative activity of green tea treated with radical initiator 2,2′-azobis (2-amidinopropane) dihydrochloride. J Agric Food Chem. 2000;48:5068–73.

    Article  CAS  PubMed  Google Scholar 

  7. Lee LS, Kim SH, Kim YB, Kim YC. Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules. 2014;19:9173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kobayashi M, Nishizawa M, Inoue N, Hosoya T, Yoshida M, Ukawa Y, Sagesaka YM, Doi T, Nakayama T, Kumazawa S, Ikeda I. Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine. J Agric Food Chem. 2014;62:2881–90.

    Article  CAS  PubMed  Google Scholar 

  9. Asahi Y, Noiri Y, Miura J, Maezono H, Yamaguchi M, Yamamoto R, Azakami H, Hayashi M, Ebisu S. Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms. J Appl Microbiol. 2014;116:1164–71.

    Article  CAS  PubMed  Google Scholar 

  10. Tamura M, Saito H, Kikuchi K, Ishigami T, Toyama Y, Takami M, Ochiai K. Antimicrobial activity of gel-entrapped catechins toward oral microorganisms. Biol Pharm Bull. 2011;34:638–43.

    Article  CAS  PubMed  Google Scholar 

  11. Khan N, Mukhtar H. Tea and health: studies in humans. Curr Pharm Des. 2013;19:6141–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yukawa M, Moriwaki H, Murakami T, Ikeda H, Iwase Y, Aki H. Effect of pH on the conformation of inclusion complexes between β-lactam antibiotics and β-cyclodextrins in aqueous solution. Kobunshi Ronbunshu. 2010;67:192–7.

    Article  CAS  Google Scholar 

  13. Wszelaka-Rylik M. Thermodynamics of β-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J Therm Anal Calorim. 2017;127:1825–34.

    Article  CAS  Google Scholar 

  14. Ikeda H, Fukushige Y, Matsubara T, Inenaga M, Kawahara M, Yukawa M, Fujisawa M, Yukawa E, Aki H. Improving water solubility of nateglinide by complexation of β-cyclodextrin. J Therm Anal Calorim. 2016;123:1847–50.

    Article  CAS  Google Scholar 

  15. Sbârcea L, Udrescu L, Ledeţi I, Szabadai Z, Fuliaş A, Sbârcea C. β-Cyclodextrin inclusion complexes of lisinopril and zofenopril. J Therm Anal Calorim. 2016;123:2377–90.

    Article  CAS  Google Scholar 

  16. Semalty A, Tanwar YS, Semalty M. Preparation and characterization of cyclodextrin inclusion complex of naringenin and critical comparison with phospholipid complexation for improving solubility and dissolution. J Therm Anal Calorim. 2014;115:2471–8.

    Article  CAS  Google Scholar 

  17. Ishizu T, Hirata C, Yamamoto H, Harano K. Structure and intramolecular flexibility of β-cyclodextrin complex with (−)-epigallocatechin gallate in aqueous solvent. Magn Reson Chem. 2006;44:776–83.

    Article  CAS  PubMed  Google Scholar 

  18. Aki H, Niiya T, Iwase Y, Kawasaki Y, Kumai K, Kimura T. Multimodal inclusion complexes of ampicillin with β-cyclodextrins in aqueous solution. Thermochim Acta. 2004;416:87–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Ohata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohata, T., Ikeda, H., Mizobe, T. et al. Effect of solution pH on complex formation between epi-type catechin and β-cyclodextrin. J Therm Anal Calorim 135, 2837–2841 (2019). https://doi.org/10.1007/s10973-018-7602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7602-3

Keywords

Navigation