Skip to main content
Log in

Thermal analysis of high viscosity deicing fluid in the heating system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aircraft ground deicing is a crucial certification to civil flight safety in cold winter. Thermal analysis of high viscosity deicing fluid in Chinese ground heating system is carried out for promoting efficiency and flight punctuality. The structure of the system is asymmetrical, which is mainly composed of combustion chamber and heat exchange tube. Combustion releases energy to heat the deicing fluid in the exchange tube. Firstly, because of the formidable asymmetric structure, the grids of system need to be meshed separately to analyze the distribution of combustion temperature field. Secondly, due to the complex properties of deicing fluid, its main component ethylene glycol is selected as the working medium to examine the heat transfer performance. Then, the variation rules of thermo-physical parameters of ethylene glycol are compared with those of ideal fluid water. The results show that the asymmetric structure leads to the temperature field shifting to the gas outlet. The central area of the combustion chamber burns more fully than the edge area. Both dynamic viscosity coefficient and Prandtl number of ethylene glycol demonstrate similar nonlinear relationships when heating. Concerning thermal conductivity, Nusselt number and convection heat transfer coefficient, the variation rules of the two fluids are approximate, but the magnitudes of ethylene glycol are obviously less than those of water. Therefore, the high viscosity of fluid shows significant effect on heat transfer performance. Finally, a heating experiment is conducted to verify the reliability of the simulation. The research is beneficial to further explore the basic mechanism of combustion and heat transfer in the system, which is of great theoretical significance for optimizing and improving the existing Chinese deicing heating system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( \rho \) :

Density of fluid \( ( {\text{kg}}\,{\text{m}}^{ - 3} ) \)

\( \vec{v} \) :

Velocity vector

\( S_{\text{m}} \) :

Mass entering a microelement in unit time

\( p \) :

Static pressure (Pa)

\( \bar{\bar{\tau }} \) :

Stress tensor

\( \rho \vec{g} \) :

Gravity term

\( \vec{F} \) :

Force on the microelement except the gravity

\( k_{\text{eff}} \) :

Effective thermal conductivity \( ( {\text{W}}\, ( {\text{m}}\,{\text{k)}}^{ - 1} ) \)

\( J_{\text{j}} \) :

Diffusion flow of component \( j \)

\( S_{\text{h}} \) :

Heat of formation or other forms of heat produced within a microelement

\( G_{\text{k}} \) :

Turbulent kinetic energy due to mean velocity gradients

\( G_{\text{b}} \) :

Turbulent kinetic energy due to buoyancy

\( Y_{\text{M}} \) :

Fluctuating dilatation in compressible turbulence to the overall dissipation rate

\( S_{\text{k}} ,S_{\upvarepsilon} \) :

User defined source term

\( C_{{1\upvarepsilon}} ,C_{{2\upvarepsilon}} ,C_{{3\upvarepsilon}} \) :

Empirical constants

\( \sigma_{\text{k}} \) :

Prandtl number related to the turbulent kinetic energy

\( \sigma_{\upvarepsilon} \) :

Prandtl number related to the turbulent kinetic energy dissipation ratio

\( \alpha \) :

Absorption coefficient

\( \sigma_{\text{s}} \) :

Scattering coefficient

\( G \) :

Incident radiation

\( C \) :

Functional relation of anisotropic phases

\( Z_{\text{i}} \) :

Mass fraction of component \( i \)

\( Z_{\text{i,ox}} \) :

Mass fraction of component \( i \) at the inlet of the oxidant flow

\( Z_{\text{i,fuel}} \) :

Mass fraction of component \( i \) at the inlet of the fuel flow

\( Nu \) :

Nusselt number

\( Pr \) :

Prandtl number

\( c \) :

Specific heat capacity \( ( {\text{J}}\, ( {\text{kg}}\,{\text{K)}}^{ - 1} ) \)

\( \mu \) :

Dynamic viscosity coefficient

\( \lambda \) :

Thermal conductivity \( ( {\text{W}}\, ( {\text{m}}\,{\text{k)}}^{ - 1} ) \)

\( \nu \) :

Kinematic viscosity coefficient

\( h \) :

Heat transfer coefficient

\( L \) :

Characteristic length (mm)

\( T \) :

Temperature (K)

\( T_{\exp } \) :

The outlet temperature of the heating experiment (K)

\( T_{\text{s}} \) :

The outlet temperature of the simulation (K)

\( \delta \) :

The error between experiment and simulation (%)

References

  1. Esfe MH, Wongwises S, Naderi A, et al. Thermal conductivity of Cu/TiO2-water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int Commun Heat Mass Transf. 2015;66:100–4.

    Article  Google Scholar 

  2. Saysroy A, Eiamsa-Ard S. Enhancing convective heat transfer in laminar and turbulent flow regions using multi-channel twisted tape inserts. Int J Therm Sci. 2017;121:55–74.

    Article  Google Scholar 

  3. Hemmat Esfe M, Karimipour A, Yan WM, et al. Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf. 2015;88:728–34.

    Article  CAS  Google Scholar 

  4. Hill EG, Zierten TA. Aerodynamic effects of aircraft ground deicing/anti-icing fluids. J Aircr. 2015;30(1):24–34.

    Article  Google Scholar 

  5. Nazhipkyzy M, Mansurov ZA, Amirfazli A, et al. Influence of superhydrophobic properties on deicing. J Eng Phys Thermophys. 2016;89(6):1476–81.

    Article  CAS  Google Scholar 

  6. Zhu CL, Liu SY, Shen YZ, et al. Verifying the deicing capacity of superhydrophobic anti-icing surfaces based on wind and thermal fields. Surf Coat Technol. 2017;309:703–8.

    Article  CAS  Google Scholar 

  7. Ismail M, Fartaj A, Karimi M. Numerical investigation on heat transfer and fluid flow behaviors of viscous fluids in a minichannel heat exchanger. Numer Heat Transf Part A Appl. 2013;64(1):1–29.

    Article  CAS  Google Scholar 

  8. Rahman MM. Combined effects of internal heat generation and higher order chemical reaction on the non-Darcian forced convective flow of a viscous incompressible fluid with variable viscosity and thermal conductivity over a stretching surface embedded in a porous medium. Can J Chem Eng. 2015;90(6):1632–45.

    Article  Google Scholar 

  9. Lai JW, Moody A, Hidouri NC. Turbulent kinetic energy transport in head-on quenching of turbulent premixed flames in the context of Reynolds Averaged Navier Stoke simulations. Fuel. 2017;199:456–77.

    Article  CAS  Google Scholar 

  10. Krause B, Liedmann B, Wiese J. 3D-DEM-CFD simulation of heat and mass transfer, gas combustion and calcination in an intermittent operating lime shaft kiln. Int J Therm Sci. 2017;117:121–35.

    Article  CAS  Google Scholar 

  11. Almsater S, Alemu A, Saman W, et al. Development and experimental validation of a CFD model for PCM in a vertical triplex tube heat exchanger. Appl Therm Eng. 2017;116:344–54.

    Article  CAS  Google Scholar 

  12. Thakare HR, Parekh AD. Experimental investigation & CFD analysis of Ranque–Hilsch vortex tube. Energy. 2017;133:284–98.

    Article  Google Scholar 

  13. Leoni GB, Klein TS, Medronho RD. Assessment with computational fluid dynamics of the effects of baffle clearances on the shell side flow in a shell and tube heat exchanger. Appl Therm Eng. 2017;112:497–506.

    Article  Google Scholar 

  14. Liu C, Bu W, Xu D. Multi-objective shape optimization of a plate-fin heat exchanger using CFD and multi-objective genetic algorithm. Int J Heat Mass Transf. 2017;111:65–82.

    Article  Google Scholar 

  15. Launder BE, Spalding DB, et al. The numerical computation of turbulent flows. Comput Methods Appl Mech Eng. 1974;3(2):269–89.

    Article  Google Scholar 

  16. Sjeric M, Kozarac D, Ormuz K. Cycle simulation turbulence modelling of IC engines. Int J Automot Technol. 2016;17(1):51–61.

    Article  Google Scholar 

  17. Hosseinnezhad R, Akbari OA, Hassanzadeh Afrouzi H, et al. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;132(1):741–59.

    Article  CAS  Google Scholar 

  18. Eiamsa-ard S, Changcharoen W. Flow structure and heat transfer in a square duct fitted with dual/quadruple twisted-tapes: influence of tape configuration. J Mech Sci Technol. 2015;29(8):3501–18.

    Article  Google Scholar 

  19. Qiu QG, Du X, Zhu XJ, et al. Study on flow and heat transfer in a finned internal cooling duct. Appl Therm Eng. 2017;113:58–69.

    Article  CAS  Google Scholar 

  20. Huang W. Investigation on the effect of strut configurations and locations on the combustion performance of a typical scramjet combustor. J Mech Sci Technol. 2015;29(12):5485–96.

    Article  Google Scholar 

  21. Lee JM, Doo JH, Min JK. Study on the turbulence model sensitivity for various cross-corrugated surfaces applied to matrix type heat exchanger. J Mech Sci Technol. 2016;30(3):1363–75.

    Article  Google Scholar 

  22. Goodarzi M, Safaei MR, Vafai K, et al. Investigation of nanofluid mixed convection in a shallow cavity using a two-phase mixture model. Int J Therm Sci. 2014;75:204–20.

    Article  CAS  Google Scholar 

  23. Fu J, Tang Y, Li JX, et al. Four kinds of the two-equation turbulence model’s research on flow field simulation performance of DPF’s porous media and swirl-type regeneration burner. Appl Therm Eng. 2016;93:397–404.

    Article  Google Scholar 

  24. Kim HR, Kim S, Kim M. (Korea). Numerical study of fluid flow and convective heat transfer characteristics in a twisted elliptic tube. J Mech Sci Technol. 2016;30(2):719–32.

    Article  Google Scholar 

  25. Chernetskiy M, Vershinina K, Strizhak P. Computational modeling of the combustion of coal water slurries containing petrochemicals. Fuel. 2018;220:109–19.

    Article  CAS  Google Scholar 

  26. Rahmanian B, Safaei MR, Kazi SN, et al. Investigation of pollutant reduction by simulation of turbulent non-premixed pulverized coal combustion. Appl Therm Eng. 2014;73(1):1222–35.

    Article  CAS  Google Scholar 

  27. Xu C, Wang ZH, Weng WB, et al. Effects of the equivalence ratio and Reynolds number on turbulence and flame front interactions by direct numerical simulation. Energy Fuels. 2016;30(8):6727–37.

    Article  CAS  Google Scholar 

  28. Yousefi A, Birouk M, Guo HS. An experimental and numerical study of the effect of diesel injection timing on natural gas/diesel dual-fuel combustion at low load. Fuel. 2017;203:642–57.

    Article  CAS  Google Scholar 

  29. Liang D, Liu J, Li H, et al. Improving effect of boron carbide on the combustion and thermal oxidation characteristics of amorphous boron. J Therm Anal Calorim. 2017;128(3):1771–82.

    Article  CAS  Google Scholar 

  30. Wu J, Wang B, Cheng F. Thermal and kinetic characteristics of combustion of coal sludge. J Therm Anal Calorim. 2017;129(3):1–11.

    Google Scholar 

  31. Mansour MS, Pitsch H, Kruse S, et al. A concentric flow slot burner for stabilizing turbulent partially premixed inhomogeneous flames of gaseous fuels. Exp Therm Fluid Sci. 2017;91:214–29.

    Article  Google Scholar 

  32. Yahya N, Hidouri A, Chrigui M, Boushaki T, Omri A. Large Eddy simulation modeling of non-premixed turbulent oxy-fuel combustion supplied by three separated jets. Combust Sci Technol. 2016;188(8):1220–38.

    Article  CAS  Google Scholar 

  33. Rajh B, Yin C, Samec N, et al. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits. J Environ Manag. 2018;218:200–8.

    Article  CAS  Google Scholar 

  34. Wang LP. Analysis of the filtered non-premixed turbulent flame. Combust Flame. 2017;175:259–69.

    Article  CAS  Google Scholar 

  35. Xie S, Liang Z, Zhang L, et al. Numerical investigation on heat transfer performance and flow characteristics in enhanced tube with dimples and protrusions. Int J Heat Mass Transf. 2018;122:602–13.

    Article  Google Scholar 

  36. Alrashed AAAA, Akbari OA, Heydari A, et al. The numerical modeling of water/FMWCNT nanofluid flow and heat transfer in a backward-facing contracting channel. Physica B. 2018;537:176–83.

    Article  CAS  Google Scholar 

  37. Cheng HD. Governing equation. Poroelasticity. Berlin: Springer; 2016.

    Book  Google Scholar 

  38. Khichi SS, Anis A, Ghosh S. Mathematical modeling of light energy flux balance in flat panel photobioreactor for botryococcus braunii growth, CO2 biofixation and lipid production under varying light regimes. Biochem Eng J. 2018;134:44–56.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of Tianjin (15JCQNJC42900), National Natural Science Foundation of China (51505483), and the Fundamental Research Funds for the Central Universities (3122013C012), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengli Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Wang, C., Nie, Q. et al. Thermal analysis of high viscosity deicing fluid in the heating system. J Therm Anal Calorim 134, 2147–2156 (2018). https://doi.org/10.1007/s10973-018-7587-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7587-y

Keywords

Navigation