Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1405–1412 | Cite as

Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy

  • G. F. Brazolin
  • C. C. S. Silva
  • L. S. Silva
  • R. A. G. SilvaEmail author
Article
  • 94 Downloads

Abstract

The phase transformations in the Cu–9Al–10Mn–3Gd alloy were studied using differential scanning calorimetry, X-ray diffraction patterns, scanning electron microscopy, energy dispersion X-ray spectroscopy and magnetic moment change with applied field and temperature. The results showed that the effects produced by the Mn atoms are dominant on those attributed to the Gd atoms in the annealed Cu–9Al–10Mn–3Gd alloy. For quaternary alloy the results also indicated that the Gd stabilizes a fraction of the paramagnetic β3 phase at lower temperatures and suppresses its paramagnetic–ferromagnetic ordering; in addition, it increases the Curie temperature of the Cu–9Al–10Mn alloy.

Keywords

Cu-based alloys Phase transformations DSC curves 

Notes

Acknowledgements

The authors thank to FAPESP (2015/18996-0) and CNPq (409714/2016-0) for financial support and LNNano for technical support during electron microscopy work (FEI-Inspect F50 FEG High-Resolution SEM).

Supplementary material

10973_2018_7586_MOESM1_ESM.docx (17 kb)
Supplementary material 1 (DOCX 16 kb)

References

  1. 1.
    Murray JL. The aluminium-copper system. Inter Metal Rev. 1985;30:211–33.Google Scholar
  2. 2.
    Klinger L, Bréchet Y, Purdy G. On the kinetics of interface-diffusion-controlled peritectoid reactions. Acta Mater. 1998;46:2617–21.CrossRefGoogle Scholar
  3. 3.
    Obradó E, Frontera C, Mañosa L, Planes A. Order-disorder transitions of Cu–Al–Mn shape-memory alloys. Phys Rev B. 1998;58:14245.CrossRefGoogle Scholar
  4. 4.
    Silva RAG, Machado ES, Adorno AT, Magdalena AG, Carvalho TM. Completeness of β-phase decomposition reaction in Cu–Al–Ag alloys. J Therm Anal Calorim. 2012;109:927–31.CrossRefGoogle Scholar
  5. 5.
    Kök M, Ata S, Yakıncı ZD, Aydogdu Y. Examination of phase changes in the CuAl high-temperature shape memory alloy with the addition of a third element. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7176-0.CrossRefGoogle Scholar
  6. 6.
    Lohan NM, Pricop B, Burlacu L, Bujoreanu L. Using DSC for the detection of diffusion-controlled phenomena in Cu-based shape memory alloys. J Therm Anal Calorim. 2018;131:215–24.CrossRefGoogle Scholar
  7. 7.
    Velazquez D, Romero R. Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy. J Therm Anal Calorim. 2017;130:2007–13.CrossRefGoogle Scholar
  8. 8.
    Bouchard M, Thomas G. Phase transitions and modulated structures in ordered (Cu–Mn)3Al alloys. Acta Metal. 1975;23:1485–500.CrossRefGoogle Scholar
  9. 9.
    Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K. Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater. 2009;57:5748–58.CrossRefGoogle Scholar
  10. 10.
    Kainuma R, Takahashi S, Ishida K. Thermoelastic martensite and shape memory effect in ductile Cu–AI–Mn alloys. Metal Mater Trans A. 1996;27A:2187–95.CrossRefGoogle Scholar
  11. 11.
    Mielczarek A, Kopp N, Riehemann W. Ageing effects after heat treatment in Cu–Al–Mn shape memory alloys. Mater Sci Eng A. 2009;182:521–2.Google Scholar
  12. 12.
    Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K. Effects of aging on stress-induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater. 2009;57:5759–70.CrossRefGoogle Scholar
  13. 13.
    Yiping L, Murthy A, Hadjipanayis GC. Giant magnetoresistance in Cu–Mn–Al. Phys Rev B. 1996;54:3033.CrossRefGoogle Scholar
  14. 14.
    Mallik US, Sampath V. Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloys Compd. 2009;469:156–63.CrossRefGoogle Scholar
  15. 15.
    Silva RAG, Paganotti A, Gama S, Adorno AT, Carvalho TM, Santos CMA. Investigation of thermal, mechanical and magnetic behaviors of the Cu–11%Al alloy with Ag and Mn additions. Mater Charact. 2013;75:194–9.CrossRefGoogle Scholar
  16. 16.
    Chen J, Li Z, Zhao YY. A high-working-temperature CuAlMnZr shape memory alloy. J Alloys Compd. 2009;480:481–4.CrossRefGoogle Scholar
  17. 17.
    Canbay CA, Genc ZK. Thermal and structural characterization of Cu–Al–Mn–X (Ti, Ni) shape memory alloys. Appl Phys A. 2014;115:371–7.CrossRefGoogle Scholar
  18. 18.
    Canbay CA, Ozgen S. Thermal and microstructural investigation of Cu–Al–Mn–Mg shape memory alloys. Appl Phys A. 2014;117:767–71.CrossRefGoogle Scholar
  19. 19.
    Benford SM, Brown GV. T–S diagram for gadolinium near the Curie temperature. J Appl Phys. 1981;52:2110–2.CrossRefGoogle Scholar
  20. 20.
    Balzar D, Popa NC. Analyzing microstructure by Rietveld Refinement. Rigaku J. 2005;22:16–25.Google Scholar
  21. 21.
    Coelho AA, Evans J, Evans I, Kern A, Parsons S. The TOPAS symbolic computation system. Powder Diffr. 2011;26(S1):22–5.CrossRefGoogle Scholar
  22. 22.
    Toby BH. R factors in Rietveld analysis: how good is good enough? Powder Diffr. 2006;21:67–70.CrossRefGoogle Scholar
  23. 23.
    Santos CMA, Adorno AT, Paganotti A, Silva CCS, Oliveira AB, Silva RAG. Phase stability in the Cu–9wt%Al–10wt%Mn–3wt%Ag alloy. J Phys Chem Solids. 2017;104:145–51.CrossRefGoogle Scholar
  24. 24.
    Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J Alloys Compds. 1998;266:191–200.CrossRefGoogle Scholar
  25. 25.
    Marcos JS, Fernández JR, Chevalier B, Bobet J-L, Etourneau J. Heat capacity and magnetocaloric effect in polycrystalline and amorphous GdMn2. J Magn Magn Mater. 2004;272–276:579–80.CrossRefGoogle Scholar
  26. 26.
    Adorno AT, Guerreiro MR, Benedetti AV. Thermal behavior of CuAl alloys near the α-CuAl solubility limit. J Thermal Anal Calorim. 2001;65:221–9.CrossRefGoogle Scholar
  27. 27.
    Adorno AT, Carvalho TM, Magdalena AG, dos Santos CMA, Silva RAG. Activation energy for the reverse eutectoid reaction in hypo-eutectoid Cu–Al alloys. Therm Acta. 2012;531:35–41.CrossRefGoogle Scholar
  28. 28.
    Oliveira AB, Silva RAG. Thermomagnetic behavior of an as-quenched Cu–Al–Mn–Gd alloy. Mater Chem Phys. 2018;209:112–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • G. F. Brazolin
    • 1
  • C. C. S. Silva
    • 1
  • L. S. Silva
    • 1
  • R. A. G. Silva
    • 1
    Email author
  1. 1.Departamento de Química - UNIFESPDiademaBrazil

Personalised recommendations