Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2397–2408 | Cite as

Numerical study on the effect of using spiral tube with lobed cross section in double-pipe heat exchangers

  • Mohamad Omidi
  • Mousa FarhadiEmail author
  • Mohamad Jafari
Article

Abstract

Turbulent flow characteristics and heat transfer applications of a twisted double-pipe heat exchanger (DPHE) with four different lobed cross sections are numerically investigated. Geometrical modifications are made for both inner and outer tubes of double-pipe heat exchangers. The numerical analyses are done based on the performance evaluation criterion (PEC), which is the relation between heat transfer rates and pressure losses. It is found out that PEC increase is more considerable regarding the outer tubes of the DPHEs. Upon simulations, it is observed that heat transfer and pressure drop decrease with the increase of lobe number in a tube, while the other tube was held smooth. At this point, maximum of respectively 240 and 85% increase in Nusselt number and pressure drop are observed. Moreover, numerical results show that 3-lobed cross section for both inner and outer tubes presents the best results in double-pipe heat exchangers, in which an enhancement of more than 200% in PEC is observed. On the other hand, in some cases, using lobed tubes may lead to inappropriate results; In the worst scenario, considering 6 as the lobe number of the inner tube, the PEC eventuates to 0.8.

Keywords

Nusselt number Friction factor Performance evaluation criterion Double-pipe heat exchanger Lobed cross section 

List of symbols

Re

Reynolds number (dimensionless)

Nu

Nusselt number (dimensionless)

f

Friction factor (dimensionless)

Pr

Prandtl number (dimensionless)

h

Heat transfer coefficient [W/(m2 K)]

ΔP

Pressure drop (Pa)

T

Temperature (K)

u

Velocity (m s−1)

q

Rate of heat transfer (W)

DH

Hydraulic diameter

De

Equivalent diameter

ρ

Density (kg m−3)

μ

Dynamics viscosity (Pa s)

ν

Kinematic viscosity (m2 s−1)

References

  1. 1.
    Jafari M, Farhadi M, Sedighi K. Single walled carbon nanotube effects on mixed convection heat transfer in an enclosure: a LBM approach. Transp Phenom Nano Micro Scales. 2014;2(1):14–28.Google Scholar
  2. 2.
    Khoshvaght-Aliabadi M, Ariana H, Khaligh S, Salami M. Effects of delta winglets on performance of wavy plate-fin in PFHEs. J Therm Anal Calorim. 2018;131(2):1625–40.CrossRefGoogle Scholar
  3. 3.
    Mozley J. Predicting dynamics of concentric pipe heat exchangers. Ind Eng Chem. 1956;48(6):1035–41.CrossRefGoogle Scholar
  4. 4.
    Cohen WC, Johnson EF. Dynamic characteristics of double-pipe heat exchangers. Ind Eng Chem. 1956;48(6):1031–4.CrossRefGoogle Scholar
  5. 5.
    Ma T, Chu W, Xu X, Chen Y, Wang Q. An experimental study on heat transfer between supercritical carbon dioxide and water near the pseudo-critical temperature in a double pipe heat exchanger. Int J Heat Mass Transf. 2016;93:379–87.CrossRefGoogle Scholar
  6. 6.
    Esfe MH, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126(2):837–43.CrossRefGoogle Scholar
  7. 7.
    Esfe MH, Rostamian H, Toghraie D, Yan W-M. Using artificial neural network to predict thermal conductivity of ethylene glycol with alumina nanoparticle. J Therm Anal Calorim. 2016;126(2):643–8.CrossRefGoogle Scholar
  8. 8.
    Mashaei P, Shahryari M, Madani S. Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. J Therm Anal Calorim. 2016;126(2):891–904.CrossRefGoogle Scholar
  9. 9.
    Ahmadi AA, Khodabandeh E, Moghadasi H, Malekian N, Akbari OA, Bahiraei M. Numerical study of flow and heat transfer of water–Al2O3 nanofluid inside a channel with an inner cylinder using Eulerian-Lagrangian approach. J Therm Anal Calorim. 2018;132(1):651–65.CrossRefGoogle Scholar
  10. 10.
    Dabiri E, Bahrami F, Mohammadzadeh S. Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition. J Therm Anal Calorim. 2018;131(3):2243–59.CrossRefGoogle Scholar
  11. 11.
    Pourfayaz F, Sanjarian N, Kasaeian A, Astaraei FR, Sameti M, Nasirivatan S. An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. J Therm Anal Calorim. 2018;131(2):1577–86.CrossRefGoogle Scholar
  12. 12.
    Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh S. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2017;127(3):2561–75.CrossRefGoogle Scholar
  13. 13.
    Hosseinnezhad R, Akbari OA, Afrouzi HH, Biglarian M, Koveiti A, Toghraie D. Numerical study of turbulent nanofluid heat transfer in a tubular heat exchanger with twin twisted-tape inserts. J Therm Anal Calorim. 2018;132(1):741–59.CrossRefGoogle Scholar
  14. 14.
    Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1911–22.CrossRefGoogle Scholar
  15. 15.
    Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7093-2.CrossRefGoogle Scholar
  16. 16.
    Abedini A, Armaghani T, Chamkha AJ. MHD free convection heat transfer of a water–Fe3O4 nanofluid in a baffled C-shaped enclosure. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7225-8.CrossRefGoogle Scholar
  17. 17.
    Chamoli S, Thakur N. Exergetic performance evaluation of solar air heater having V-down perforated baffles on the absorber plate. J Therm Anal Calorim. 2014;117(2):909–23.CrossRefGoogle Scholar
  18. 18.
    Heydari A, Akbari OA, Safaei MR, Derakhshani M, Alrashed AA, Mashayekhi R, et al. The effect of attack angle of triangular ribs on heat transfer of nanofluids in a microchannel. J Therm Anal Calorim. 2018;131(3):2893–912.CrossRefGoogle Scholar
  19. 19.
    Gholami MR, Akbari OA, Marzban A, et al. The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6902-3.CrossRefGoogle Scholar
  20. 20.
    Naphon P. Heat transfer and pressure drop in the horizontal double pipes with and without twisted tape insert. Int Commun Heat Mass Transf. 2006;33(2):166–75.CrossRefGoogle Scholar
  21. 21.
    Yadav AS. Effect of half length twisted-tape turbulators on heat transfer and pressure drop characteristics inside a double pipe u-bend heat exchanger. JJMIE. 2009;3(1):17–22.Google Scholar
  22. 22.
    Akpinar EK. Evaluation of heat transfer and exergy loss in a concentric double pipe exchanger equipped with helical wires. Energy Convers Manag. 2006;47(18–19):3473–86.CrossRefGoogle Scholar
  23. 23.
    Naphon P. Effect of coil-wire insert on heat transfer enhancement and pressure drop of the horizontal concentric tubes. Int Commun Heat Mass Transfer. 2006;33(6):753–63.CrossRefGoogle Scholar
  24. 24.
    Braga C, Saboya F. Turbulent heat transfer, pressure drop and fin efficiency in annular regions with continuous longitudinal rectangular fins. Exp Therm Fluid Sci. 1999;20(2):55–65.CrossRefGoogle Scholar
  25. 25.
    Ye W-B. Enhanced latent heat thermal energy storage in the double tubes using fins. J Therm Anal Calorim. 2017;128(1):533–40.CrossRefGoogle Scholar
  26. 26.
    Karanth VK, Murthy K. Numerical study of heat transfer in a finned double pipe heat exchanger. World J Model Simul. 2015;11(1):43–54.Google Scholar
  27. 27.
    Yang R, Chiang FP. An experimental heat transfer study for periodically varying-curvature curved-pipe. Int J Heat Mass Transf. 2002;45(15):3199–204.CrossRefGoogle Scholar
  28. 28.
    Rennie TJ, Raghavan VG. Experimental studies of a double-pipe helical heat exchanger. Exp Therm Fluid Sci. 2005;29(8):919–24.CrossRefGoogle Scholar
  29. 29.
    Dizaji HS, Jafarmadar S, Mobadersani F. Experimental studies on heat transfer and pressure drop characteristics for new arrangements of corrugated tubes in a double pipe heat exchanger. Int J Therm Sci. 2015;96:211–20.CrossRefGoogle Scholar
  30. 30.
    Bhadouriya R, Agrawal A, Prabhu S. Experimental and numerical study of fluid flow and heat transfer in an annulus of inner twisted square duct and outer circular pipe. Int J Therm Sci. 2015;94:96–109.CrossRefGoogle Scholar
  31. 31.
    Ariyaratne C. Design and optimisation of swirl pipes and transition geometries for slurry transport. Nottingham: University of Nottingham; 2005.Google Scholar
  32. 32.
    Jafari M, Farhadi M, Sedighi K. Thermal performance enhancement in a heat exchanging tube via a four-lobe swirl generator: an experimental and numerical approach. Appl Therm Eng. 2017;124:883–96.CrossRefGoogle Scholar
  33. 33.
    Jafari M, Dabiri S, Farhadi M, Sedighi K. Effects of a three-lobe swirl generator on the thermal and flow fields in a heat exchanging tube: an experimental and numerical approach. Energy Convers Manag. 2017;148:1358–71.CrossRefGoogle Scholar
  34. 34.
    Gorman JM, Sparrow EM, Abraham JP, Minkowycz WJ. Evaluation of the efficacy of turbulence models for swirling flows and the effect of turbulence intensity on heat transfer. Numer Heat Transf Part B Fundam. 2016;70(6):485–502.CrossRefGoogle Scholar
  35. 35.
    Jafari M, Farhadi M, Sedighi K. An experimental study on the effects of a new swirl generator on thermal performance of a circular tube. Int Commun Heat Mass Transf. 2017;87:277–87.CrossRefGoogle Scholar
  36. 36.
    Kitoh O. Experimental study of turbulent swirling flow in a straight pipe. J Fluid Mech. 1991;225:445–79.CrossRefGoogle Scholar
  37. 37.
    Steenbergen W, Voskamp J. The rate of decay of swirl in turbulent pipe flow. Flow Meas Instrum. 1998;9(2):67–78.CrossRefGoogle Scholar
  38. 38.
    Li G, Hall P, Miles N, Wu T. Improving the efficiency of ‘clean-in-place’ procedures using a four-lobed swirl pipe: a numerical investigation. Comput Fluids. 2015;108:116–28.CrossRefGoogle Scholar
  39. 39.
    Omidi M, Farhadi M, Jafari M. A comprehensive review on double pipe heat exchangers. Appl Therm Eng. 2017;110:1075–90.CrossRefGoogle Scholar
  40. 40.
    Tang X, Dai X, Zhu D. Experimental and numerical investigation of convective heat transfer and fluid flow in twisted spiral tube. Int J Heat Mass Transf. 2015;90:523–41.CrossRefGoogle Scholar
  41. 41.
    Pourfattah F, Motamedian M, Sheikhzadeh G, Toghraie D. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water–Al2O3 nanofluid in a tube. Int J Mech Sci. 2017.  https://doi.org/10.1016/j.ijmecsci.2017.07.049.CrossRefGoogle Scholar
  42. 42.
    Kakac S, Liu H, Pramuanjaroenkij A. Heat exchangers: selection, rating, and thermal design. Boca Raton: CRC Press; 2012.CrossRefGoogle Scholar
  43. 43.
    Gnielinski V. Neue Gleichungen für den Wärme- und den Stoffübergang in turbulent durchströmten Rohren und Kanälen. Forschung im Ingenieurwesen A. 1975;41(1):8–16.  https://doi.org/10.1007/bf02559682.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringBabol Noshirvani University of TechnologyBabolIran
  2. 2.Faculty of Mechanical EngineeringLorestan UniversityKhoramabadIran

Personalised recommendations