Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 2, pp 1045–1057 | Cite as

Autothermal pyrolysis of biomass due to intrinsic thermal decomposition effects

  • R. B. Tabakaev
  • A. V. Astafev
  • Y. V. Dubinin
  • N. A. Yazykov
  • A. S. Zavorin
  • V. A. Yakovlev
Article

Abstract

The harmful emissions from traditional organic fuels combustion cause irreparable harm to the environment, which leads to the conclusion that it is necessary to reorient the energy sector to renewable energy sources such as biomass. Traditional methods of combustion are of little use for the energy use of biomass. This fact forces us to search new efficient technologies for its processing. Pyrolysis is one of the most universal and promising areas of biomass processing. However, its implementation requires significant heat costs, which has a considerable impact on the result of the feasibility study. The aim of the work is to study the thermal effects observed in low-temperature pyrolysis and to assess the possibility of autothermal biomass processing. Straw, chips from various types of wood, pine sawdust and peat from two deposits of the Tomsk region (Russia) were considered as a biomass. A physical experiment, differential thermal analysis, gas chromatography and heat balance equations were used in the work. It has been established that low-temperature pyrolysis of biomass is accompanied by a positive value of the thermal effect in the temperature range of 220–580 °C and varies from 393 to 1475 kJ kg−1 depending on the type of raw materials being processed. The value of this effect makes it possible to organize pyrolysis of biomass in an autothermal regime with preliminary drying: maximum moisture content for straw of 19.9%, wood chips of 10.4%, sawdust of 9.7% and Sukhovskoy peat of 9.5%.

Keywords

Biomass Low-temperature pyrolysis Autothermal regime Thermal effect Estimation of thermal consumption for pyrolysis 

Notes

Acknowledgements

We would like to express our great appreciation to Tomsk Polytechnic University project partners from European Universities and organizations within the framework of funds and programmes, TEMPUS, TACIS, DAAD, INTAS, Marie Curie Fellowship, FP6 (INCO) etc. The research is funded from Tomsk Polytechnic University Competitiveness Enhancement Program grant.

References

  1. 1.
    World Energy Outlook Special Report. Energy and air pollution. Paris: International Energy Agency; 2016.Google Scholar
  2. 2.
    Costello A, Abbas M, Allen A, Ball S, Bell S, Bellamy R, Friel S, Groce N, Johnson A, Kett M, Lee M, Levy C, Maslin M, McCoy D, McGuire B, Montgomery H, Napier D, Pagel C, Patel J, de Oliveira JAP, Redclift N, Rees H, Rogger D, Scott J, Stephenson J, Twigg J, Wolff J, Patterson C. Managing the health effects of climate change. Lancet and University College London Institute for Global Health Commission. The Lancet. 2009.  https://doi.org/10.1016/s0140-6736(09)60935-1.CrossRefGoogle Scholar
  3. 3.
    Tian HZ, Wang Y, Xue ZG, Cheng K, Qu YP, Chai FH, Hao JM. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980-2007. Atmos Chem Phys. 2010.  https://doi.org/10.5194/acp-10-11905-2010.CrossRefGoogle Scholar
  4. 4.
    Yang Y, Li X, Gao L, Shao X. Modeling and impact factors analyzing of energy consumption in CNC face milling using GRASP gene expression programming. Int J Adv Manuf Technol. 2016.  https://doi.org/10.1007/s00170-013-5017-7.CrossRefGoogle Scholar
  5. 5.
    Bezrukikh PP. Vozobnovljaemaja energetika: segodnya – real’nost’, zavtra – neobhodimost’ [Renewable energy: today’s reality, tomorrow’s necessity]. Moscow: Forest country; 2007 (in Russian).Google Scholar
  6. 6.
    Ren N-Q, Zhao L, Chen C, Guo W-Q, Cao G-L. A review on bioconversion of lignocellulosic biomass to H2: key challenges and new insights. Energies. 2014.  https://doi.org/10.1016/j.biortech.2016.03.124.CrossRefGoogle Scholar
  7. 7.
    Demirbas A. Political, economic and environmental impacts of biofuels: a review. Appl Energy. 2009.  https://doi.org/10.1016/j.apenergy.2009.04.036.CrossRefGoogle Scholar
  8. 8.
    Yin C, Rosendahl LA, Kær SK. Grate-firing of biomass for heat and power production. Prog Energy Combust Sci. 2008.  https://doi.org/10.1016/j.pecs.2008.05.002.CrossRefGoogle Scholar
  9. 9.
    Leung DYC, Yang Y. Wind energy development and its environmental impact: a review. Renew Sustain Energy Rev. 2012.  https://doi.org/10.1016/j.rser.2011.09.024.CrossRefGoogle Scholar
  10. 10.
    Yoo S-Y, Kwak S-Y. Willingness to pay for green electricity in Korea: a contingent valuation study. Energy Policy. 2009.  https://doi.org/10.1016/j.enpol.2009.07.062.CrossRefGoogle Scholar
  11. 11.
    Jacobsson S, Lauber V. The politics and policy of energy system transformation—explaining the German diffusion of renewable energy technology. Energy Policy. 2006.  https://doi.org/10.1016/j.enpol.2004.08.029.CrossRefGoogle Scholar
  12. 12.
    Winzer C. Conceptualizing energy security. Energy Policy. 2012.  https://doi.org/10.1016/j.enpol.2012.02.067.CrossRefGoogle Scholar
  13. 13.
    Awerbuch S. Portfolio-based electricity generation planning: policy implications for renewables and energy security. Mit Adapt Strateg Glob Change. 2006.  https://doi.org/10.1007/s11027-006-4754-4.CrossRefGoogle Scholar
  14. 14.
    Fortov VE, Popel’ OS. The current status of the development of renewable energy sources worldwide and in Russia. Therm Eng. 2014.  https://doi.org/10.1134/S0040601514060020.CrossRefGoogle Scholar
  15. 15.
    Armaroli N, Balzani V. Towards an electricity-powered world. Energy Environ Sci. 2011.  https://doi.org/10.1039/c1ee01249e.CrossRefGoogle Scholar
  16. 16.
    D’Adamo I, Rosa P. Current state of renewable energies performances in the European Union: a new reference framework. Energy Convers Manage. 2016.  https://doi.org/10.1016/j.enconman.2016.05.027.CrossRefGoogle Scholar
  17. 17.
    Dellano-Paz F, Calvo-Silvosa A, Iglesias Antelo S, Soares I. The European low-carbon mix for 2030: the role of renewable energy sources in an environmentally and socially efficient approach. Renew Sustain Energy Rev. 2015.  https://doi.org/10.1016/j.rser.2015.03.032.CrossRefGoogle Scholar
  18. 18.
    Meade N, Islam T. Modelling European usage of renewable energy technologies for electricity generation. Technol Forecast Soc Change. 2015.  https://doi.org/10.1016/j.techfore.2014.03.007.CrossRefGoogle Scholar
  19. 19.
    Council of the European Union. Presidency Conclusions of the Brussels European Council of 8/9 March 2007. http://europa.eu/legislation_summaries/energy/renewable_energy/l27065_en.htm (2007). Accessed 2 May 2007.
  20. 20.
    Brown P. European Union wind and solar electricity policies: overview and considerations. In: Diaz JS, editor. Climate, energy, and environment: issues, analyses, and developments. New York: Nova Science Publishers Inc.; 2014. p. 119–68.Google Scholar
  21. 21.
    Stambouli AB, Khiat Z, Flazi S, Kitamura Y. A review on the renewable energy development in Algeria: current perspective, energy scenario and sustainability issues. Renew Sustain Energy Rev. 2012.  https://doi.org/10.1016/j.rser.2012.04.031.CrossRefGoogle Scholar
  22. 22.
    Conti J, et al. International Energy Outlook 2016. Washington: International Energy Agency; 2013.Google Scholar
  23. 23.
    Izadyar N, Ong HC, Chong WT, Leong KY. Resource assessment of the renewable energy potential for a remote area: a review. Renew Sustain Energy Rev. 2016.  https://doi.org/10.1016/j.rser.2016.05.005.CrossRefGoogle Scholar
  24. 24.
    Popel’ OS, Reutov BF, Antropov AP. Prospective lines of using renewable energy sources in centralized and independent power systems. Therm Eng. 2010.  https://doi.org/10.1134/S0040601510110017.CrossRefGoogle Scholar
  25. 25.
    Patel S. The power potential of Southern Africa. Power. 2014;158:23p.Google Scholar
  26. 26.
    Kotzé P. The potential of small hydropower plants in South Africa. Water Wheel. 2011;10:18–20.Google Scholar
  27. 27.
    Laitinen S, Laitinen J, Fagernäs L, Korpijärvi K, Korpinen L, Ojanen K, Aatamila M, Jumpponen M, Koponen H, Jokiniemi J. Exposure to biological and chemical agents at biomass power plants. Biomass Bioenergy. 2016.  https://doi.org/10.1016/j.biombioe.2016.06.025.CrossRefGoogle Scholar
  28. 28.
    Boyarko GY, Bernatonis PV, Bernatonis VK. The peat industry of Russia and the world. The analysis of the current state and development prospects. Miner Resour Rus Econ Manag. 2014;6:56–61 (in Russian).Google Scholar
  29. 29.
    Van Der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, Defries RS, Jin Y, Van Leeuwen TT. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys. 2010.  https://doi.org/10.5194/acp-10-11707-2010.CrossRefGoogle Scholar
  30. 30.
    Page SE, Siegert F, Rieley JO, Boehm H-DV, Jaya A, Limin S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature. 2002.  https://doi.org/10.1038/nature01131.CrossRefPubMedGoogle Scholar
  31. 31.
    Murphy F, Devlin G, McDonnell K. Greenhouse gas and energy based life cycle analysis of products from the Irish wood processing industry. J Clean Prod. 2015.  https://doi.org/10.1016/j.jclepro.2015.01.001.CrossRefGoogle Scholar
  32. 32.
    Obernberger I. Decentralized biomass combustion: state of the art and future development. Biomass Bioenergy. 1998.  https://doi.org/10.1016/S0961-9534(97)00034-2.CrossRefGoogle Scholar
  33. 33.
    Bhattacharya SC. Wood energy in India: status and prospects. Energy. 2015.  https://doi.org/10.1016/j.energy.2015.03.043.CrossRefGoogle Scholar
  34. 34.
    Uchitel’ AD, Kormer MV, Lyalyuk VP, Lyakhova IA, Shmel’tser EO, Vititnev YI. Transportation of coal concentrates at negative ambient temperatures. Coke Chem. 2013.  https://doi.org/10.3103/S1068364X13050104.CrossRefGoogle Scholar
  35. 35.
    Schönnenbeck C, Trouvé G, Valente M, Garra P, Brilhac JF. Combustion tests of grape marc in a multi-fuel domestic boiler. Fuel. 2016.  https://doi.org/10.1016/j.fuel.2016.04.034.CrossRefGoogle Scholar
  36. 36.
    Tugov AN, Ryabov GA, Shtegman AV, Ryzhii IA, Litun DS. All-Russia Thermal Engineering Institute experience in using difficult to burn fuels in the power industry. Therm Eng. 2016.  https://doi.org/10.1134/S0040601516070089.CrossRefGoogle Scholar
  37. 37.
    Markov VI, Volkova NI. Torf – vozobnovljaemyj resurs u nas pod nogami [Peat is a renewable resource under our feet]. Ecol Ind Rus. 2014;1:58–60 (in Russian).Google Scholar
  38. 38.
    Castillo-Villar KK. Metaheuristic algorithms applied to bioenergy supply chain problems: theory, review, challenges, and future. Energies. 2014.  https://doi.org/10.3390/en7117640.CrossRefGoogle Scholar
  39. 39.
    Lutz J, Lekov A, Chan P, Whitehead CD, Meyers S, McMahon J. Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers. Energy. 2006.  https://doi.org/10.1016/j.energy.2005.02.002.CrossRefGoogle Scholar
  40. 40.
    Magdziarz A, Wilk M, Straka R. Combustion process of torrefied wood biomass. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-016-5731-0.CrossRefGoogle Scholar
  41. 41.
    Qi J, Han K, Wang Q, Gao J. Carbonization of biomass: effect of additives on alkali metals residue, SO2 and NO emission of chars during combustion. Energy. 2017.  https://doi.org/10.1016/j.energy.2017.04.109.CrossRefGoogle Scholar
  42. 42.
    Tabakaev R, Shanenkov I, Kazakov A, Zavorin A. Thermal processing of biomass into high-calorific solid composite fuel. J Anal Appl Pyrolysis. 2017.  https://doi.org/10.1016/j.jaap.2017.02.016.CrossRefGoogle Scholar
  43. 43.
    Simonov AD, Fedorov NA. Dubinin YuV, Yazykov NA, Yakovlev VA, Parmon VN. Catalytic heat-generating units for industrial heating. Catal Ind. 2013.  https://doi.org/10.1134/S207005041301008X.CrossRefGoogle Scholar
  44. 44.
    Alonso DM, Bond JQ, Dumesic JA. Catalytic conversion of biomass to biofuels. Green Chem. 2010.  https://doi.org/10.1039/c004654j.CrossRefGoogle Scholar
  45. 45.
    Kotaiah Naik D, Monika K, Prabhakar S, Parthasarathy R, Satyavathi B. Pyrolysis of sorghum bagasse biomass into bio-char and bio-oil products. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-016-6061-y.CrossRefGoogle Scholar
  46. 46.
    Stelte W, Sanadi AR, Shang L, Holm JK, Ahrenfeldt J, Henriksen UB. Recent developments in biomass pelletization—a review. BioResources. 2012;7:4451–90.Google Scholar
  47. 47.
    Nowakowski DJ, Bridgwater AV, Elliott DC, Meier D, de Wild P. Lignin fast pyrolysis: results from an international collaboration. J Anal Appl Pyrolysis. 2010.  https://doi.org/10.1016/j.jaap.2010.02.009.CrossRefGoogle Scholar
  48. 48.
    Amutio M, Lopez G, Aguado R, Bilbao J, Olazar M. Biomass oxidative flash pyrolysis: autothermal operation, yields and product properties. Energy Fuels. 2012.  https://doi.org/10.1021/ef201662x.CrossRefGoogle Scholar
  49. 49.
    Milhé M, Van De Steene L, Haube M, Commandré J-M, Fassinou W-F, Flamant G. Autothermal and allothermal pyrolysis in a continuous fixed bed reactor. J Anal Appl Pyrolysis. 2013.  https://doi.org/10.1016/j.jaap.2013.03.011.CrossRefGoogle Scholar
  50. 50.
    Li D, Berruti F, Briens C. Autothermal fast pyrolysis of birch bark with partial oxidation in a fluidized bed reactor. Fuel. 2014.  https://doi.org/10.1016/j.fuel.2013.12.042.CrossRefGoogle Scholar
  51. 51.
    Vagia ECh, Lemonidou AA. Thermodynamic analysis of hydrogen production via autothermal steam reforming of selected components of aqueous bio-oil fraction. Int J Hydrogen Energy. 2008.  https://doi.org/10.1016/j.ijhydene.2008.02.057.CrossRefGoogle Scholar
  52. 52.
    Kazakov AV, Plakhova TM, Popov RI. Autothermal pyrolysis of peat in conditions of free movement in layer. MATEC Web Conf. 2014.  https://doi.org/10.1051/matecconf/20141901019.CrossRefGoogle Scholar
  53. 53.
    Kulesh RN, Orlova KY. Field research of firing stored peat critical conditions. MATEC Web Conf. 2016.  https://doi.org/10.1051/matecconf/20167201055.CrossRefGoogle Scholar
  54. 54.
    Aronov SG, Nesterenko LL. Himija tverdyh gorjuchih iskopaemyh [Chemistry of solid fuels]. Kharkov: Publishing house of Kharkov University; 1960 (in Russian).Google Scholar
  55. 55.
    Agroskin AA, Leibman VB. Teplofizika tvjordogo topliva [Thermal physics of solid fuel]. Moscow: Nedra; 1980 (in Russian).Google Scholar
  56. 56.
    Shishakov NV. Osnovy proizvodstva gorjuchih gazov [The basis of the combustible gases production]. Moscow: State energy publishing house; 1948 (in Russian).Google Scholar
  57. 57.
    Milosavljevic I, Oja V, Suuberg EM. Thermal effects in cellulose pyrolysis: relationship to char formation processes. Ind Eng Chem Res. 1996;35:653–62.CrossRefGoogle Scholar
  58. 58.
    Narayan R, Antal MJ Jr. Thermal lag, fusion, and the compensation effect during biomass pyrolysis. Ind Eng Chem Res. 1996;35:1711–21.CrossRefGoogle Scholar
  59. 59.
    Vargaftik NB. Spravochnik po teplofizicheskim svojstvam gazov i zhidkostej [Reference book on heat-transfer properties of gases and liquids]. Moscow: Stars; 2006 (in Russian).Google Scholar
  60. 60.
    Fedoseev SD, Chernyshev AB. Polukoksovanie i gazifikacija tverdogo topliva [Low-temperature carbonisation and gasification of solid fuels]. Moscow: Gostoptekhizdat; 1960 (in Russian).Google Scholar
  61. 61.
    Rudyka VI, Zubilin IG. Termodinamicheskij analiz teplovogo jeffekta obrazovanija pirogeneticheskoj vody v processe koksovanija uglej [Thermodynamic analysis of thermal effect of education paragenetically water in the coking process of coal]. Uglehimicheskij zhurnal [Coal Chem J]. 2005;5–6:12–5 (in Russian).Google Scholar
  62. 62.
    Shelkov AK. Spravochnik koksohimika [Handbook of a coke-chemist]. Moscow: Metallurgiya; 1966 (in Russian).Google Scholar
  63. 63.
    Mohan D, Pittman CU Jr, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006.  https://doi.org/10.1021/ef0502397.CrossRefGoogle Scholar
  64. 64.
    Simoneit BRT. Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl Geochem. 2002.  https://doi.org/10.1016/S0883-2927(01)00061-0.CrossRefGoogle Scholar
  65. 65.
    Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH. Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crops Res. 2009.  https://doi.org/10.1016/j.fcr.2008.10.006.CrossRefGoogle Scholar
  66. 66.
    Sivenkov AB. Vlijanie fiziko-himicheskih harakteristik drevesiny na ee pozharnuju opasnost’ i jeffektivnost’ ognezashhity: dissertacija doktora tehnicheskih nauk [The effect of physico-chemical characteristics of the wood on the fire hazard and the effectiveness of fire protection: dissertation of doctor in technical sciences]. Moscow; 2014 (in Russian).Google Scholar
  67. 67.
    Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci. 2008.  https://doi.org/10.1039/b810100k.CrossRefGoogle Scholar
  68. 68.
    Grønli MG, Várhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41:4201–8.CrossRefGoogle Scholar
  69. 69.
    Shen DK, Gu S. The mechanism for thermal decomposition of cellulose and its main products. Biores Technol. 2009.  https://doi.org/10.1016/j.biortech.2009.06.095.CrossRefGoogle Scholar
  70. 70.
    Chen W-H, Kuo P-C. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy. 2011.  https://doi.org/10.1016/j.energy.2010.12.036.CrossRefGoogle Scholar
  71. 71.
    Wang S, Guo X, Wang K, Luo Z. Influence of the interaction of components on the pyrolysis behavior of biomass. J Anal Appl Pyrolysis. 2011.  https://doi.org/10.1016/j.jaap.2011.02.006.CrossRefGoogle Scholar
  72. 72.
    Koufopanos CA, Maschio G, Lucchesi A. Kinetic modelling of the pyrolysis of biomass and biomass components. Can J Chem Eng. 1989.  https://doi.org/10.1002/cjce.5450670111.CrossRefGoogle Scholar
  73. 73.
    Orfao JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model. Fuel. 1999;78:349–58.CrossRefGoogle Scholar
  74. 74.
    Sivenkov AB, Tarasov NI. Pozharnaja opasnost’ drevesiny razlichnyh porod [Fire danger of a various species wood]. Pozhary i chrezvychajnye situacii: predotvrashhenie, likvidacija [Fires and emergencies: prevention, elimination]. 2008;1:14–28 (in Russian).Google Scholar
  75. 75.
    Chertkova EYu. Tehnologija dobychi i kondicionirovanija frezernogo torfa dlja poluchenija gidrofobnyh modifikatorov: avtoreferat dissertacii [The technology of extraction and conditioning of milled peat for obtaining a hydrophobic modifiers: dissertation abstract of Cand. Sci.]. Tver; 2014 (in Russian).Google Scholar
  76. 76.
    Nordin A. Chemical elemental characteristics of biomass fuels. Biomass Bioenergy. 1994.  https://doi.org/10.1016/0961-9534(94)E0031-M.CrossRefGoogle Scholar
  77. 77.
    Young KD, Leboeuf EJ. Glass transition behavior in a peat humic acid and an aquatic fulvic acid. Environ Sci Technol. 2000.  https://doi.org/10.1021/es000889j.CrossRefGoogle Scholar
  78. 78.
    Kapaev GI. Fiziko-himicheskie osnovy processa termicheskogo razlozhenija solej ugol’noj kisloty: avtoreferat dissertacii [Physico-chemical bases of the thermal decomposition process of carbonic acid salts: dissertation abstract of Cand. Sci.]. Moscow; 2009 (in Russian).Google Scholar
  79. 79.
    Alves MCF, Souza SC, Lima SJG, Longo E, Souza AG, Santos IMG. Influence of the precursor salts in the synthesis of CaSnO3 by the polymeric precursor method. J Anal Appl Pyrolysis. 2007.  https://doi.org/10.1007/s10973-006-7853-2.CrossRefGoogle Scholar
  80. 80.
    Kučerík J, Kovář J, Pekař M. Thermoanalytical investigation of lignite humic acids fractions. J Therm Anal Calorim. 2004.  https://doi.org/10.1023/B:JTAN.0000027803.24266.48.CrossRefGoogle Scholar
  81. 81.
    Ya Didushinsky. Osnovy proektirovanija kataliticheskih reaktorov [Bases of catalytic reactors design]. Moscow: Chemistry; 1972 (in Russian).Google Scholar
  82. 82.
    Dupont C, Chiriac R, Gauthier G, Toche F. Heat capacity measurements of various biomass types and pyrolysis residues. Fuel. 2014.  https://doi.org/10.1016/j.fuel.2013.07.086.CrossRefGoogle Scholar
  83. 83.
    Ohliger A, Förster M, Kneer R. Torrefaction of beechwood: a parametric study including heat of reaction and grindability. Fuel. 2013.  https://doi.org/10.1016/j.fuel.2012.06.112.CrossRefGoogle Scholar
  84. 84.
    Kulesh RN. Teplomassoperenos pri zazhiganii i gorenii massiva torfa: avtoreferat dissertacii [Heat and mass transfer during ignition and combustion of a batch of peat: dissertation abstract of Cand. Sci.]. Tomsk: TPU publisher; 2010 (in Russian).Google Scholar
  85. 85.
    Grishin AM, Golovanov AN, Sukov YV. Experimental determination of thermophysical, thermokinetic, and filtration characteristics of peat. J Eng Phys. 2006.  https://doi.org/10.1007/s10891-006-0135-9.CrossRefGoogle Scholar
  86. 86.
    Benscoter BW, Thompson DK, Waddington JM, Flannigan MD, Wotton BM, De Groot WJ, Turetsky MR. Interactive effects of vegetation, soil moisture and bulk density on depth of burning of thick organic soils. Int J Wildland Fire. 2011.  https://doi.org/10.1071/WF08183.CrossRefGoogle Scholar
  87. 87.
    Zaichenko VM. Povyshenie potrebitel’skih svojstv tverdogo topliva iz biomassy [Increase of consumer properties of solid fuel from biomass]. Jenergosberezhenie [Energy Sav]. 2014;3:66–8 (in Russian).Google Scholar
  88. 88.
    Teplovoj raschet kotlov: normativnyj metod [Bases of combustible gas manufacture]. Moscow; 1948 (in Russian).Google Scholar
  89. 89.
    Gronli MG, Melaaen MC. Mathematical model for wood pyrolysis-comparison of experimental measurements with model predictions. Energy Fuels. 2000;14:791–800.CrossRefGoogle Scholar
  90. 90.
    Park WC, Atreya A, Baum HR. Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame. 2010.  https://doi.org/10.1016/j.combustflame.2009.10.006.CrossRefGoogle Scholar
  91. 91.
    Sutcu H. Pyrolysis of peat: product yield and characterization. Korean J Chem Eng. 2007.  https://doi.org/10.1007/s11814-007-0035-5.CrossRefGoogle Scholar
  92. 92.
    Şensöz S, Can M. Pyrolysis of pine (Pinus Brutia Ten.) chips: 1. Effect of pyrolysis temperature and heating rate on the product yields. Energy Sources. 2002.  https://doi.org/10.1080/00908310252888727.CrossRefGoogle Scholar
  93. 93.
    Sukiran MA, Kheang LS, Bakar NA, May CY. Production and characterization of bio-char from the pyrolysis of empty fruit bunches. Am J Appl Sci. 2011;8:984–8.CrossRefGoogle Scholar
  94. 94.
    Bogdanov NN. Polukoksovanie i gazifikacija torfa [Carbonization and gasification of peat]. Moscow: Gosenergoizdat; 1947 (in Russian).Google Scholar
  95. 95.
    Tabakaev RB, Khaustov SA, Cherkashina GA, Kazakov AV. Low-grade fuels of Tomsk region: prospects for energy use. Bull Tomsk Polytech Univ Geo Assets Eng. 2015;326:106–13.Google Scholar
  96. 96.
    Kolotushkin VI. Spravochnaja knizhka torfjanika [Reference book of peatbogs]. Moscow: Nedra; 1973 (in Russian).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • R. B. Tabakaev
    • 1
  • A. V. Astafev
    • 1
  • Y. V. Dubinin
    • 2
  • N. A. Yazykov
    • 2
  • A. S. Zavorin
    • 1
  • V. A. Yakovlev
    • 2
  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Boreskov Institute of Catalysis SB RASNovosibirskRussia

Personalised recommendations