Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1667–1680 | Cite as

Effects of the nanofiller size and aspect ratio on the thermal and rheological behavior of PEG nanocomposites containing boehmites or hydrotalcites

  • Rossella Arrigo
  • Silvia Ronchetti
  • Laura Montanaro
  • Giulio Malucelli
Article
  • 95 Downloads

Abstract

In this work, polyethylene glycol nanocomposites containing different nanofillers (namely hydrotalcites or boehmites, at 5 mass% loading) were prepared by melt compounding. Their morphology and microstructure were assessed by means of SEM and XRD analyses. The interactions between the different nanofillers and the polymer matrix were evaluated by performing rheological, differential scanning calorimetry and thermogravimetric analyses. The two types of nanofillers were found to differently interact with the polymer matrix. In particular, the rheological tests performed on the systems containing hydrotalcites revealed that the presence of nanofillers affects the relaxation dynamics of the macromolecular chains, in a remarkable way. Conversely, the crystallinity degree of the polymer was influenced by the presence of boehmites only, whose nucleating capability was found to depend on their average size. Finally, the thermo-oxidative stability of the polymer matrix was generally improved by the selected nanofillers, with the only exception of the organo-modified hydrotalcite that significantly anticipated the polymer degradation.

Keywords

Polyethylene glycol nanocomposites Boehmites Hydrotalcites Rheology Thermal properties 

References

  1. 1.
    Tang Z, He C, Tian H, Ding J, Hsiao BS, Chu B, Chen X. Polymeric nanostructured materials for biomedical applications. Prog Polym Sci. 2016;60:86–128.CrossRefGoogle Scholar
  2. 2.
    Zakiyan SE, Azizi H, Ghasemi I. Influence of chain mobility on rheological, dielectric and electromagnetic interference shielding properties of polymethyl–methacrylate composites filled with graphene and carbon nanotube. Compos Sci Technol. 2017;142:10–9.CrossRefGoogle Scholar
  3. 3.
    Park JH, Kim H, Han DH, Lim JC, Oh DH, Min KE. Rheological behavior of hydrophilic silica dispersion in polyethylene glycol. J Appl Polym Sci. 2007;103:2481–6.CrossRefGoogle Scholar
  4. 4.
    Kotal M, Bhowmick AK. Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci. 2015;51:127–87.CrossRefGoogle Scholar
  5. 5.
    Rueda MM, Auscher MC, Fulchiron R, Périé T, Martin G, Sonntag P, Cassagneau P. Rheology and applications of highly filled polymers: a review of current understanding. Prog Polym Sci. 2017;66:22–53.CrossRefGoogle Scholar
  6. 6.
    Morreale M, Mistretta MC, Fiore V. Creep behavior of poly(lactic acid) based biocomposites. Materials. 2017;10:395.CrossRefGoogle Scholar
  7. 7.
    Bera M, Maji PK. Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites. Polymer. 2017;119:118–23.CrossRefGoogle Scholar
  8. 8.
    Fujisawa S, Togawa E, Kuroda K. Facile route to transparent, strong, and thermally stable nanocellulose/polymer nanocomposites from an aqueous Pickering emulsion. Biomacromolecules. 2017;18:266–71.CrossRefGoogle Scholar
  9. 9.
    Bu J, Huang X, Li S, Jiang P. Significantly enhancing the thermal oxidative stability while remaining the excellent electrical insulating property of low density polyethylene by addition of antioxidant functionalized graphene oxide. Carbon. 2016;106:218–27.CrossRefGoogle Scholar
  10. 10.
    Zhang W, Camino G, Yang R. Polymer/polyhedral oligomeric silsesquioxane (POSS) nanocomposites: an overview of fire retardance. Prog Polym Sci. 2017;67:77–125.CrossRefGoogle Scholar
  11. 11.
    Ameli A, Kazemi Y, Wang S, Park CB, Pötschke P. Process–microstructure–electrical conductivity relationships in injection-molded polypropylene/carbon nanotube nanocomposite foams. Compos Part A Appl Sci. 2017;96:28–36.CrossRefGoogle Scholar
  12. 12.
    Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng. 2008;39:933–61.CrossRefGoogle Scholar
  13. 13.
    La Mantia FP, Arrigo R, Morreale M. Effect of the orientation and rheological behavior of biodegradable polymer nanocomposites. Eur Polym J. 2014;54:11–7.CrossRefGoogle Scholar
  14. 14.
    Khani MM, Woo D, Mumpower EL, Benicewicz BC. Poly(alkyl methacrylate)-grafted silica nanoparticles in polyethylene nanocomposites. Polymer. 2017;109:339–48.CrossRefGoogle Scholar
  15. 15.
    Boyne DA, Savage AM, Griep MH, Beyer FL, Orlicki JA. Process induced alignment of gold nano-rods (GNRs) in thermoplastic polymer composites with tailored optical properties. Polymer. 2017;110:250–9.CrossRefGoogle Scholar
  16. 16.
    Lu C, Mai YW. Influence of aspect ratio on barrier properties of polymer–clay nanocomposites. Phys Rev Lett. 2005;95:088303.CrossRefGoogle Scholar
  17. 17.
    Wu D, Wu L, Zhou W, Sun Y, Zhang M. Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites. J Polym Sci Pol Phys. 2010;48:479–89.CrossRefGoogle Scholar
  18. 18.
    Pötschke P, Fornes TD, Paul DR. Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer. 2002;43:3247–55.CrossRefGoogle Scholar
  19. 19.
    Guo J, Liu Y, Prada-Silvy R, Tan Y, Azad S, Krause B, Pötschke P, Grady BP. Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J Polym Sci Pol Phys. 2014;52:73–83.CrossRefGoogle Scholar
  20. 20.
    Bhattacharya M. Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials. 2016;9:262.CrossRefGoogle Scholar
  21. 21.
    Mangiacapra P, Raimondo M, Tammaro L, Vittoria V. Nanometric dispersion of a Mg/Al layered double hydroxide into a chemically modified polycaprolactone. Biomacromolecules. 2007;8:773–9.CrossRefGoogle Scholar
  22. 22.
    Basu D, Das A, Stockelhuber KW, Wagenknecht U, Heinrich G. Advances in layered double hydroxide (LDH)-based elastomer composites. Prog Polym Sci. 2014;39:594–626.CrossRefGoogle Scholar
  23. 23.
    Manzi-Nshuti C, Songtipya P, Manias E, Jimenez-Gasco MM, Hossenlopp JM, Wilkie CA. Polymer nanocomposites using zinc aluminum and magnesium aluminum oleate layered double hydroxides: effects of LDH divalent metals on dispersion, thermal, mechanical and fire performance in various polymers. Polymer. 2009;50:3564–74.CrossRefGoogle Scholar
  24. 24.
    Coriolano ACF, Alves AA, Araujo RA, Delgado RCOB, Carvalho FR, Fernandes VJ, Araujo AS. Thermogravimetry study of the ester interchange of sunflower oil using Mg/Al layered double hydroxides (LDH) impregnated with potassium. J Therm Anal Calorim. 2017;127:1863–7.CrossRefGoogle Scholar
  25. 25.
    Arrigo R, Dintcheva NT, Tarantino G, Passaglia E, Coiai S, Cicogna F, Filippi S, Nasillo G, Chillura Martino D. An insight into the interaction between functionalized thermoplastic elastomer and layered double hydroxides through rheological investigations. Compos Part B Eng. 2018;139:47–54.CrossRefGoogle Scholar
  26. 26.
    Coiai S, Passaglia E, Hermann A, Augier S, Pratelli D, Streller RC. The influence of the compatibilizer on the morphology and thermal properties of polypropylene-layered double hydroxide composites. Polym Compos. 2010;31:744–54.Google Scholar
  27. 27.
    Chen W, Qu B. Structural characteristics and thermal properties of PP-g-MA/MgAl-LDH exfoliation nanocomposites synthesized by solution intercalation. Chem Mater. 2003;15:3208–13.CrossRefGoogle Scholar
  28. 28.
    Lonkar SP, Therias S, Leroux F, Gardette JL, Singh RP. Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites. Polym Int. 2011;60:1688–96.CrossRefGoogle Scholar
  29. 29.
    Khumalo VM, Karger-Kocsis J, Thomann R. Polyethylene/synthetic boehmite alumina nanocomposites: structure, mechanical, and perforation impact properties. J Mater Sci. 2011;46:422–8.CrossRefGoogle Scholar
  30. 30.
    Karger-Kocsis J, Lendvai L. Polymer/boehmite nanocomposites: a review. J Appl Polym Sci. 2018.  https://doi.org/10.1002/app.45573 (in press).CrossRefGoogle Scholar
  31. 31.
    He X, Sun J, Xu X, Lv Z, Song J. Thermal analysis of phosphorus-modified boehmite nanosheets and isoelectric points (IEP) of the corresponding γ-alumina. J Therm Anal Calorim. 2017;130:2249–56.CrossRefGoogle Scholar
  32. 32.
    Bocchini S, Morlat-Therias S, Gardette JL, Camino G. Influence of nanodispersed boehmite on polypropylene photooxidation. Polym Degrad Stab. 2017;92:1847–56.CrossRefGoogle Scholar
  33. 33.
    Siengchin S, Karger-Kocsis J, Thomann R. Nanofilled and/or toughened POM composites produced by water-mediated melt compounding: structure and mechanical properties. Express Polym Lett. 2008;2:746–56.CrossRefGoogle Scholar
  34. 34.
    Ogunniran ES, Sadiku R, Sinha Ray S, Luruli N. Morphology and thermal properties of compatibilized PA12/PP blends with boehmite alumina nanofiller inclusions. Macromol Mater Eng. 2012;267:627–38.CrossRefGoogle Scholar
  35. 35.
    Khumalo VM, Karger-Kocsis J, Thomann R. Polyethylene/synthetic boehmite alumina nanocomposites: structure, thermal and rheological properties. Express Polym Lett. 2010;5:264–74.CrossRefGoogle Scholar
  36. 36.
    Siengchin S, Karger-Kocsis J, Thomann R. Alumina-filled polystyrene micro- and nanocomposites prepared by melt mixing with and without latex precompounding: structure and properties. J Appl Polym Sci. 2007;105:2963–72.CrossRefGoogle Scholar
  37. 37.
    Streller RC, Thomann T, Torno O, Mulhaupt R. Isotactic poly(propylene) nanocomposites based upon boehmite nanofillers. Macromol Mater Eng. 2008;293:218–27.CrossRefGoogle Scholar
  38. 38.
    Shahid N, Villate RG, Barron AR. Chemically functionalized alumina nanoparticle effect on carbon fiber/epoxy composites. Compos Sci Technol. 2005;65:2250–8.CrossRefGoogle Scholar
  39. 39.
    Zhang C, Tang Z, Guo B. High-performance rubber/boehmite nanoplatelets composites by judicious in situ interfacial design. Compos Sci Technol. 2017;146:191–7.CrossRefGoogle Scholar
  40. 40.
    Malucelli G, Palmero P, Ronchetti S, Delmastro A, Montanaro L. Effect of various alumina nano-fillers on the thermal and mechanical behavior of low-density polyethylene-Al2O3 composites. Polym Int. 2010;59:1084–9.Google Scholar
  41. 41.
    Vuorinen E, Nhlapo N, Mafa T, Karger-Kocsis J. Thermooxidative degradation of LDPE nanocomposites: effect of surface treatments of fumed silica and boehmite alumina. Polym Degrad Stab. 2013;98:2297–305.CrossRefGoogle Scholar
  42. 42.
    Schindler A, Doedt M, Gezgin S, Menzel J, Schmölzer S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J Therm Anal Calorim. 2017;129:833–42.CrossRefGoogle Scholar
  43. 43.
    Walter H, Brooks DE, Fisher D. Partitioning in aqueous two-phase systems. Orlando: Academic Press; 1985.Google Scholar
  44. 44.
    Katona G, Sipos P, Frohberg P, Ulrich J, Szabó-Révész P, Jójárt-Laczkovich O. Study of paracetamol-containing pastilles produced by melt technology. J Therm Anal Calorim. 2016;123:2549–59.CrossRefGoogle Scholar
  45. 45.
    Fisher D, Sutherland IA. Separations using aqueous phase systems: applications in cell biology and biotechnology. London: Plenum; 1989.CrossRefGoogle Scholar
  46. 46.
    Harris JM, Dust JM, McGill RA, Harris PA, Edgell MJ, Sedaghat-Herati RM, Karr LJ, Donnelly DL. New polyethylene glycols for biomedical applications. In: Water-soluble polymers. ACS symposium series. Washington: American Chemical Society; 1991. p. 418–29.Google Scholar
  47. 47.
    Jamiolkowski DD, Shalaby SW. A polymeric radiostabilizer for absorbable polyesters. In: Radiation effects on polymers. ACS symposium series. Washington: American Chemical Society; 1991. p. 300–9.Google Scholar
  48. 48.
    Pielichowski K, Flejtuch K. Differential scanning calorimetry studies on poly(ethylene glycol) with different molecular weights for thermal energy storage materials. Polym Adv Technol. 2002;13:690–6.CrossRefGoogle Scholar
  49. 49.
    Chatterjee T, Krishnamoorti R. Rheology of polymer carbon nanotubes composites. Soft Matter. 2013;9:9515–29.CrossRefGoogle Scholar
  50. 50.
    Gentile G, Ambrogi V, Cerruti P, Di Maio R, Nasti G, Carfagna C. Pros and cons of melt annealing on the properties of MWCNT/polypropylene composites. Polym Degrad Stab. 2014;110:56–64.CrossRefGoogle Scholar
  51. 51.
    Ferry JD. Viscoelastic properties of polymers. New York: Wiley; 1980.Google Scholar
  52. 52.
    La Mantia FP, Dintcheva NT, Filippone G, Acierno D. Structure and dynamics of polyethylene/clay films. J Appl Polym Sci. 2006;102:4749–58.CrossRefGoogle Scholar
  53. 53.
    Vivek R, Joseph K, Simon GP, Bhattacharyya AR. Melt-mixed composites of multi-walled carbon nanotubes and thermotropic liquid crystalline polymer: morphology, rheology and mechanical properties. Compos Sci Technol. 2017;151:184–92.CrossRefGoogle Scholar
  54. 54.
    Gleissle W, Hochstein B. Validity of the Cox–Merz rule for concentrated suspensions. J Rheol. 2003;47:897–993.CrossRefGoogle Scholar
  55. 55.
    Cavallaro G, De Lisi R, Lazzara G, Milioto S. Polyethylene glycol/clay nanotubes composites. Thermal properties and structure. J Therm Anal Calorim. 2013;112:383–90.CrossRefGoogle Scholar
  56. 56.
    Cavallaro G, Lazzara G, Milioto S. Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab. 2013;98:2529–36.CrossRefGoogle Scholar
  57. 57.
    Sun Q, Yuan Y, Zhang H, Cao X, Sun L. Thermal properties of polyethylene glycol/carbon microsphere composite as a novel phase change material. J Therm Anal Calorim. 2017;130:1741–9.CrossRefGoogle Scholar
  58. 58.
    Lin YJ, Li DQ, Evans DG, Duan X. Modulating effect of Mg–Al–CO3 layered double hydroxides on the thermal stability of PVC resin. Polym Degrad Stab. 2005;88:286–93.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Applied Science and Technology, Local INSTM UnitPolitecnico di TorinoAlessandriaItaly
  2. 2.Department of Applied Science and Technology, Local INSTM UnitPolitecnico di TorinoTurinItaly

Personalised recommendations