Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1873–1882 | Cite as

Thermal stability assessment of a new energetic Ca(II) compound with ZTO ligand by DSC and ARC

  • Jiaping Zhu
  • Shuqin Fu
  • Keyao Li
  • Xierong ZengEmail author
  • Shaojun ChenEmail author


A new energetic Ca(H2O)6·(HZTO·2H2O)2 was crystallized in the monoclinic space group C2/c, and its thermal characteristics and kinetics were studied by differential scanning calorimetry (DSC) and accelerating rate calorimetry (ARC). DSC measurements showed one endothermic peak and one exothermic peak with decomposition occurring at 286.8, 290.5, 296.5, and 303.2 °C at different heating rates (2.5, 5, 10, and 20 °C min−1). The critical temperature of thermal explosion (Tb) and kinetics parameters were calculated; the results show that Ca(HZTO·2H2O)2·6H2O is stable below 273.1 °C. The thermal behavior of Ca(H2O)6·(HZTO·2H2O)2 under adiabatic condition was studied by ARC: The onset temperature was 185.7 °C, and the thermal decomposition ended at 228.2 °C within the time span of 458.1 min. In addition, thermokinetic parameters such as the activation energy Ea and pre-exponential factor A under adiabatic condition were also obtained.


Ca(H2O)6·(HZTO·2H2O)2 Crystal structure DSC ARC Thermal behavior 



The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No. 51773120), the Natural Science Foundation of Guangdong (Grant Nos. 2014A030313559, 2016A030313050, 2017A030310045), the National Natural Science Foundation of Guangdong Province for Vertical Coordination Project (No. 201642), the Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A), the Science and Technology Project of Shenzhen City (Grant Nos. JCYJ20170412105034748, CYZZ20150827160341635, and ZDSYS201507141105130), and the Top Talent Launch Scientific Research Projects of Shenzhen (827-000133). We are indebted to Dr. Zhang Chunyuan who studied in Beijing Institute of Technology for considerable assistance with ARC testing.

Supplementary material

10973_2018_7552_MOESM1_ESM.docx (948 kb)
Supplementary material 1 (DOCX 947 kb)


  1. 1.
    Gao HX, Shreeve JM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.CrossRefGoogle Scholar
  2. 2.
    Zhang QH, Shreeve JM. Metal-organic frameworks as high explosives: a new concept for energetic materials. Angew Chem Int Ed. 2014;53:2540–2.CrossRefGoogle Scholar
  3. 3.
    Klapötke TM. High energy density materials. Berlin: Springer; 2007.CrossRefGoogle Scholar
  4. 4.
    Talawar MB, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;161:589–607.CrossRefGoogle Scholar
  5. 5.
    Zhang JH, Shreeve JM. 3D Nitrogen-rich metal–organic frameworks: opportunities for safer energetics. Dalton Trans. 2016;45:2363–8.CrossRefGoogle Scholar
  6. 6.
    Zhang HB, Zhang MJ, Lin P, Malgras V, Tang J, Alshehri S, Yamauchi Y, Du SW, Zhang J. A highly energetic N-rich metal-organic framework as a new high-energy-density material. Chem Eur J. 2016;22:1141–5.CrossRefGoogle Scholar
  7. 7.
    Zhang S, Yang Q, Liu XY, Qu XN, Wei Q, Xie G, Chen SP, Gao SL. High-energy metal-organic frameworks (HE-MOFs): synthesis, structure and energetic performance. Coord Chem Rev. 2016;307:292–312.CrossRefGoogle Scholar
  8. 8.
    Zhang JC, Du Y, Dong K, Su H, Zhang SW, Li SH, Pang SP. Taming dinitramide anions within an energetic metal–organic framework: a new strategy for synthesis and tunable properties of high energy materials. Chem Mater. 2016;28:1472–80.CrossRefGoogle Scholar
  9. 9.
    Li SH, Wang Y, Qi C, Zhao XX, Zhang JC, Zhang SW, Pang SP. 3D energetic metal–organic frameworks: synthesis and properties of high energy materials. Angew Chem Int Ed. 2013;52:14031–5.CrossRefGoogle Scholar
  10. 10.
    Shang Y, Jin B, Peng RF, Liu QQ, Tan BS, Guo ZC, Zhao J, Zhang QC. A novel 3D energetic MOF of high energy content: synthesis and superior explosive performance of a Pb(II) compound with 5,5′-bistetrazole-1,1′-diolate. Dalton Trans. 2016;45:13881–7.CrossRefGoogle Scholar
  11. 11.
    Song XX, Zhang S, Zhao GW, Zhang WD, Chen DP, Yang Q, Wei Q, Xie G, Yang DS, Chen SP, Gao SL. Ag(I)-based high-energy metal organic frameworks (HE-MOFs) incorporating coordinated moieties in channels: synthesis, structure and physicochemical properties. RSC Adv. 2016;6:93231–7.CrossRefGoogle Scholar
  12. 12.
    Feng YY, Liu XY, Duan LQ, Yang Q, Wei Q, Xie G, Chen SP, Yang XW, Gao SL. In situ synthesized 3D heterometallic metal–organic framework (MOF) as a high-energy density material shows high heat of detonation, good thermostability and insensitivity. Dalton Trans. 2015;44:2333–9.CrossRefGoogle Scholar
  13. 13.
    Liu XY, Gao WJ, Sun PP, Su ZY, Chen SP, Wei Q, Xie G, Gao SL. Environmentally friendly high-energy MOFs: crystal structures, thermostability, insensitivity and remarkable detonation performances. Green Chem. 2015;17:831–6.CrossRefGoogle Scholar
  14. 14.
    Dippold AA, Klapötke TM. A study of dinitro-bis-1,2,4-triazole-1,1′-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides. J Am Chem Soc. 2013;135:9931–8.CrossRefGoogle Scholar
  15. 15.
    Fischer N, Hüll K, Klapötke TM, Stierstorfer J, Laus G, Hummel M, Froschauer C, Wurstb K, Schottenberger H. 5,5′-Azoxytetrazolates—a new nitrogen-rich dianion and its comparison to 5,5′-azotetrazolate. Dalton Trans. 2012;41:11201–11.CrossRefGoogle Scholar
  16. 16.
    Li YC, Qi C, Li SH, Zhang HJ, Sun CH, Yu YZ, Pang SP. 1,1′-Azobis-1,2,3-triazole: a high-nitrogen compound with stable N8 structure and photochromism. J Am Chem Soc. 2010;132:12172–3.CrossRefGoogle Scholar
  17. 17.
    Qi C, Li SH, Li YC, Wang Y, Chen XK, Pang SP. A novel stable high-nitrogen energetic material: 4,4′-azobis(1,2,4-triazole). J Mater Chem. 2011;21:3221–5.CrossRefGoogle Scholar
  18. 18.
    Zhu JP, Jin SH, Yu YH, Li LJ, Chen SS, Shu QH. The crystal structure and thermal analysis of ZTO and its solvent adducts. Res Chem Intermed. 2016;42:4333–40.CrossRefGoogle Scholar
  19. 19.
    Zhu JP, Jin SH, Wan L, Zhang CY, Li LJ, Chen SS, Shu QH. Nitrogen-rich 4,4′-azobis(1,2,4-triazolone) salts—the synthesis and promising properties of a new family of high-density insensitive materials. Dalton Trans. 2016;45:3590–8.CrossRefGoogle Scholar
  20. 20.
    Guo JJ, Cao WL, Li SL, Miao KH, Song JR, Huang J. Synthesis and crystal structure of a two-dimensional sodium coordination polymer of 4,4′-(diazenediyl)bis(1H-1,2,4-triazol-5-one). Acta Cryst. 2016;C72:166–9.Google Scholar
  21. 21.
    Zhu JP, Jin SH, Cheng B, Li KY, Zeng XR, Chen SJ. Thermal stability assessment of 4,4′-azo-bis(1,2,4-triazolone) (ZTO) and its salts by accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2018;132:563–9.CrossRefGoogle Scholar
  22. 22.
    Zhu JP, Jin SH, Yu YH, Zhang CY, Li LLJ, Chen SS, Shu QH. Evaluation of thermal hazards and thermo-kinetic parameters of N, N′-dinitro-4,4′-azo-Bis(1,2,4-triazolone) (DNZTO). Thermochim Acta. 2016;623:58–64.CrossRefGoogle Scholar
  23. 23.
    Pakkirisamy SV, Mahadevan S, Paramashivan SS, Mandal AB. Adiabatic thermokinetics and process safety of pyrotechnic mixtures. J Therm Anal Calorim. 2012;109:1387–95.CrossRefGoogle Scholar
  24. 24.
    Zhang CY, Jin SH, Ji JW, Jing BC, Bao F, Zhang GY, Shu QH. Thermal hazard assessment of TNT and DNAN under adiabatic condition by using accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2018;131:89–93.CrossRefGoogle Scholar
  25. 25.
    Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124:1485–96.CrossRefGoogle Scholar
  26. 26.
    Trache D, Khimeche K. Study on the influence of ageing on chemical and mechanical properties of N, N′-dimethyl-N, N′-diphenylcarbamide stabilized propellants. J Therm Anal Calorim. 2013;111:305–12.CrossRefGoogle Scholar
  27. 27.
    Sopaci ŞB, Nazır H, Emir E, Atakol O, Öz S. Thermal kinetic analysis, theoretical thermodynamic calculations and antimicrobial activity of three new energetic materials. J Therm Anal Calorim. 2018;131:3105–20.CrossRefGoogle Scholar
  28. 28.
    Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128:335–48.CrossRefGoogle Scholar
  29. 29.
    Sheldrick GM. SHELXS-97 program for X-ray crystal structure determination. Göttingen: University of Göttingen; 1997.Google Scholar
  30. 30.
    Sheldrick GM. SHELXL-97 program for X-ray crystal structure refinement. Göttingen: University of Göttingen; 1997.Google Scholar
  31. 31.
    Brandenburg K. DIAMOND version 3.2 crystal impact. Bonn: GbR; 2012.Google Scholar
  32. 32.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta (Rev). 2011;520:1–19.CrossRefGoogle Scholar
  33. 33.
    Townsend DI, Tou JC. Thermal hazard evaluation by an accelerating rate calorimeter. Thermochim Acta. 1980;37:1–30.CrossRefGoogle Scholar
  34. 34.
    Sivapirakasam SP, Mohamed MN, Surianarayanan M, Sridhar VP. Evaluation of thermal hazards and thermo-kinetic parameters of a matchhead composition by DSC and ARC. Thermochim Acta. 2013;557:13–9.CrossRefGoogle Scholar
  35. 35.
    Radacsi N, Bouma RH, Haye EL, Horst JH, Stankiewicz AI, Heijden AE. On the reliability of sensitivity test methods for submicrometer-sized RDX and HMX particles. Propellants Explos Pyrotech. 2013;38:761–9.CrossRefGoogle Scholar
  36. 36.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  37. 37.
    Trache D, Khimeche K. Study on the influence of ageing on thermal decomposition of double-base propellants and prediction of their in-use time. Fire Mater. 2013;37:328–36.CrossRefGoogle Scholar
  38. 38.
    Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Calorim. 1970;2:301–24.CrossRefGoogle Scholar
  39. 39.
    Trache D, Maggi F, Palmucci I, DeLuca LT. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2017. Scholar
  40. 40.
    Hu RZ, Gao SL, Zhao FQ. Thermal analysis kinetics. Beijing: Science Press; 2008.Google Scholar
  41. 41.
    Zhang TL, Hu RZ, Xie Y, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.CrossRefGoogle Scholar
  42. 42.
    Liu Y, Yang Q, Chen LP, He ZQ, Lu Y, Chen WH. Thermal sensitivity of energetic materials characterized by accelerating rate calorimeter (ARC). Chin J Energy Mater. 2011;19:656–60.Google Scholar
  43. 43.
    Zhang CY, Jin SH, Chen SS, Li LJ, Zhou C, Zhang Y, Shu QH. Thermal behavior and thermo-kinetic studies of 5,5′-bistetrazole-1,1′-diolate (1,1-BTO). J Therm Anal Calorim. 2017;129:1265–70.CrossRefGoogle Scholar
  44. 44.
    Sasidharan N, Hariharanath B, Rajendran AG. Thermal decomposition studies on energetic triazole derivatives. Thermochim Acta. 2011;520:139–44.CrossRefGoogle Scholar
  45. 45.
    Zhang GY, Jin SH, Li LJ, Li YK, Wang DQ, Li W, Zhang T, Shu QH. Thermal hazard assessment of 4,10-dinitro-2,6,8,12-tetraoxa-4,10-diazaisowutrzitane (TEX) by accelerating rate calorimeter (ARC). J Therm Anal Calorim. 2016;126(2):467–71.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Nanshan District Key Lab for Biopolymers and Safety Evaluation, College of Materials Science and EngineeringShenzhen UniversityShenzhenChina
  2. 2.Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations