Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 6, pp 3107–3114 | Cite as

Crystallization behavior and mechanical properties of poly(lactic acid)/poly(ethylene oxide) blends nucleated by a self-assembly nucleator

  • Weili Kong
  • Beibei Tong
  • Aolin Ye
  • Ruixue Ma
  • Jiaomin Gou
  • Yaming WangEmail author
  • Chuntai Liu
  • Changyu Shen


Poly(lactic acid) (PLA)/poly(ethylene oxide) (PEO) blends nucleated by a self-assembly nucleating agent, N,N′,N″-tricyclohexyl-1,3,5-benzenetricarboxylamide (BTCA), were prepared by melt blending. The crystallization behavior and mechanical properties of the materials were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction, dynamic mechanical analyzer and tensile testing. It was found that PEO had a synergistic effect together with BTCA on promoting PLA crystallization, besides its toughening effect on the material. Moreover, BTCA revealed prominent reinforcement effect on both neat PLA and PLA/PEO blends in the glass transition region and above, indicating the improvement on the heat resistance of the materials.


Poly(lactic acid) Poly(ethylene oxide) Nucleating agent Thermal analyses Mechanical properties 



This work is financially supported by the National Natural Science Foundation of China (51573170, U1704162, and 11432003).


  1. 1.
    Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.CrossRefGoogle Scholar
  2. 2.
    Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000;21:117–32.CrossRefGoogle Scholar
  3. 3.
    Laycock B, Nikolic M, Colwell JM, Gauthier E, Halley P, Bottle S, George G. Lifetime prediction of biodegradable polymers. Prog Polym Sci. 2017;71:144–89.CrossRefGoogle Scholar
  4. 4.
    Jin X, Gu X, Chen C, Tang W, Li H, Liu X, Bourbigot S, Zhang Z, Sun J, Zhang S. The fire performance of polylactic acid containing a novel intumescent flame retardant and intercalated layered double hydroxides. J Mater Sci. 2017;52:12235–50.CrossRefGoogle Scholar
  5. 5.
    Wang Y, Steinhoff B, Brinkmann C, Alig I. In-line monitoring of the thermal degradation of poly(L-lactic acid) during melt extrusion by UV-vis spectroscopy. Polymer. 2008;49:1257–65.CrossRefGoogle Scholar
  6. 6.
    Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.CrossRefGoogle Scholar
  7. 7.
    Bubeck RA, Merrington A, Dumitrascu A, Smith PB. Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends. J Therm Anal Calorim. 2018;131:309–16.CrossRefGoogle Scholar
  8. 8.
    Zhang H, Shao C, Kong W, Wang Y, Cao W, Liu C, Shen C. Memory effect on the crystallization behavior of poly(lactic acid) probed by infrared spectroscopy. Eur Polym J. 2017;91:376–85.CrossRefGoogle Scholar
  9. 9.
    Wang Y, Li M, Shen C. Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Mater Lett. 2011;65:3525–8.CrossRefGoogle Scholar
  10. 10.
    Wang Y, Li M, Wang K, Shao C, Li Q, Shen C. Unusual structural evolution of poly(lactic acid) upon annealing in the presence of an initially oriented mesophase. Soft Matter. 2014;10:1512–8.CrossRefGoogle Scholar
  11. 11.
    Wang Y, Zhang H, Li M, Cao W, Liu C, Shen C. Orientation and structural development of semicrystalline poly(lactic acid) under uniaxial drawing assessed by infrared spectroscopy and X-ray diffraction. Polym Test. 2015;41:163–71.CrossRefGoogle Scholar
  12. 12.
    Wang Y, Liu L, Li M, Cao W, Liu C, Shen C. Spectroscopic analysis of post drawing relaxation in poly(lactic acid) with oriented mesophase. Polym Test. 2015;43:103–7.CrossRefGoogle Scholar
  13. 13.
    Wang Y, Ribelles JLG, Sanchez MS, Mano JF. Morphological contributions to glass transition in poly(L-lactic acid). Macromolecules. 2005;38:4712–8.CrossRefGoogle Scholar
  14. 14.
    Wang M, Wu Y, Li YD, Zeng JB. Progress in toughening poly(lactic acid) with renewable polymers. Polym Rev. 2017;57:557–93.CrossRefGoogle Scholar
  15. 15.
    Ferri JM, Samper MD, Garcia-Sanoguera D, Reig MJ, Fenollar O, Balart R. Plasticizing effect of biobased epoxidized fatty acid esters on mechanical and thermal properties of poly(lactic acid). J Mater Sci. 2016;51:5356–66.CrossRefGoogle Scholar
  16. 16.
    Refaa Z, Boutaous M, Xin S, Siginer DA. Thermophysical analysis and modeling of the crystallization and melting behavior of PLA with talc. J Therm Anal Calorim. 2017;128:687–98.CrossRefGoogle Scholar
  17. 17.
    Pan P, Liang Z, Cao A, Inoue Y. Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces. 2009;1:402–11.CrossRefGoogle Scholar
  18. 18.
    Li M, Hu D, Wang Y, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci. 2010;50:2298–305.CrossRefGoogle Scholar
  19. 19.
    Han Q, Wang Y, Shao C, Zheng G, Li Q, Shen C. Nonisothermal crystallization kinetics of biodegradable poly(lactic acid)/zinc phenylphosphonate composites. J Compos Mater. 2013;48:2737–46.CrossRefGoogle Scholar
  20. 20.
    Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R. Crystallization behavior of carbon nanotube-polylactide nanocomposites. Macromolecules. 2011;44:6496–502.CrossRefGoogle Scholar
  21. 21.
    Wang Y, Tong B, Hou SJ, Li M, Shen CY. Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A. 2011;42:66–74.CrossRefGoogle Scholar
  22. 22.
    Zhang R, Wang Y, Wang K, Zheng G, Li Q, Shen C. Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polym Bull. 2013;70:195–206.CrossRefGoogle Scholar
  23. 23.
    He D, Wang Y, Shao C, Zheng G, Li Q, Shen C. Effect of phthalimide as an efficient nucleating agent on the crystallization kinetics of poly(lactic acid). Polym Test. 2013;32:1088–93.CrossRefGoogle Scholar
  24. 24.
    Wang Y, He D, Xiao W, Wei C, Li Q, Shen C. Crystallization of poly(lactic acid) enhanced by phthalhydrazide as nucleating agent. Polym Bull. 2013;70:2911–22.CrossRefGoogle Scholar
  25. 25.
    Gui Z, Lu C, Cheng S. Comparison of the effects of commercial nucleation agents on the crystallization and melting behaviour of polylactide. Polym Test. 2013;32:15–21.CrossRefGoogle Scholar
  26. 26.
    Xu T, Wang Y, Han Q, He D, Li Q, Shen C. Nonisothermal crystallization kinetics of poly(lactic acid) nucleated with a multiamide nucleating agent. J Macromol Sci B. 2014;53:1680–94.CrossRefGoogle Scholar
  27. 27.
    Zhang H, Wang S, Zhang S, Ma R, Wang Y, Cao W, Liu C, Shen C. Crystallization behavior of poly(lactic acid) with a self-assembly aryl amide nucleating agent probed by real-time infrared spectroscopy and X-ray diffraction. Polym Test. 2017;64:12–9.CrossRefGoogle Scholar
  28. 28.
    Song P, Wei Z, Liang J, Chen G, Zhang W. Crystallization behavior and nucleation analysis of poly(l-lactic acid) with a multiamide nucleating agent. Polym Eng Sci. 2012;52:1058–68.CrossRefGoogle Scholar
  29. 29.
    Nakajima H, Takahashi M, Kimura Y. Induced crystallization of PLLA in the presence of 1,3,5-benzenetricarboxylamide derivatives as nucleators: preparation of haze-free crystalline PLLA materials. Macromol Mater Eng. 2010;295:460–8.Google Scholar
  30. 30.
    Bai H, Zhang W, Deng H, Zhang Q, Fu Q. Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecules. 2011;44:1233–7.CrossRefGoogle Scholar
  31. 31.
    Xie Q, Han L, Shan G, Bao Y, Pan P. Polymorphic crystalline structure and crystal morphology of enantiomeric poly(lactic acid) blends tailored by a self-assemblable aryl amide nucleator. ACS Sustain Chem Eng. 2016;4:2680–8.CrossRefGoogle Scholar
  32. 32.
    Fan Y, Zhu J, Yan S, Chen X, Yin J. Nucleating effect and crystal morphology controlling based on binary phase behavior between organic nucleating agent and poly(L-lactic acid). Polymer. 2015;67:63–71.CrossRefGoogle Scholar
  33. 33.
    Ma P, Xu Y, Wang D, Dong W, Chen M. Rapid crystallization of poly(lactic acid) by using tailor-made oxalamide derivatives as novel soluble-type nucleating agents. Ind Eng Chem Res. 2014;53:12888–92.CrossRefGoogle Scholar
  34. 34.
    Ma P, Yu Q, Shen T, Dong W, Chen M. Strong synergetic effect of fibril-like nucleator and shear flow on the melt crystallization of poly(L-lactide). Eur Polym J. 2017;87:221–30.CrossRefGoogle Scholar
  35. 35.
    Tsuji H, Horikawa G, Itsuno S. Melt-processed biodegradable polyester blends of poly(L-lactic acid) and poly(ε-caprolactone): effects of processing conditions on biodegradation. J Appl Polym Sci. 2017;104:831–41.CrossRefGoogle Scholar
  36. 36.
    Sakai F, Nishikawa K, Inoue Y, Yazawa K. Nucleation enhancement effect in poly(L-lactide) (PLLA)/poly(ε-caprolactone) (PCL) blend induced by locally activated chain mobility resulting from limited miscibility. Macromolecules. 2009;42:8335–42.CrossRefGoogle Scholar
  37. 37.
    Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q. Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl Mater Interfaces. 2012;4:897–905.CrossRefGoogle Scholar
  38. 38.
    Jiang L, Wolcott MP, Zhang JW. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol. 2006;7:199–207.CrossRefGoogle Scholar
  39. 39.
    Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL. Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci. 2010;116:680–7.Google Scholar
  40. 40.
    Dil EJ, Carreau PJ, Favis BD. Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Polymer. 2015;68:202–12.CrossRefGoogle Scholar
  41. 41.
    Moustafa H, El KN, Abou-Kandil AI, Abdel-Aziz MS, Dufresne A. PLA/PBAT bionanocomposites with antimicrobial natural rosin for green packaging. ACS Appl Mater Interfaces. 2017;9:20132–41.CrossRefGoogle Scholar
  42. 42.
    Desai NP, Hubbell JA. Surface physical interpenetrating networks of poly(ethylene terephthalate) and poly(ethylene oxide) with biomedical applications. Macromolecules. 1992;25:6718–32.CrossRefGoogle Scholar
  43. 43.
    Lee JH, Kim KO, Ju YM. Polyethylene oxide additive-entrapped polyvinyl chloride as a new blood bag material. J Biomed Mater Res, Part A. 1999;48:328–34.CrossRefGoogle Scholar
  44. 44.
    Nakafuku C, Sakoda M. Melting and crystallization of poly(L-lactic acid) and poly(ethylene oxide) binary mixture. Polym J. 1993;25:909–17.CrossRefGoogle Scholar
  45. 45.
    Nakafuku C. High pressure crystallization of poly(L-lactic acid) in a binary mixture with poly(ethylene oxide). Polym J. 1994;26:680–7.CrossRefGoogle Scholar
  46. 46.
    Nakaruku C. Effects of molecular weight on the melting and crystallization of poly(L-lactic acid) in a mixture with poly(ethylene oxide). Polym J. 1996;28:568–75.CrossRefGoogle Scholar
  47. 47.
    Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer. 1993;37:5849–57.CrossRefGoogle Scholar
  48. 48.
    Rufino TDC, Felisberti MI. Confined PEO crystallisation in immiscible PEO/PLLA blends. RSC Adv. 2016;6:30937–50.CrossRefGoogle Scholar
  49. 49.
    Chiu FC, Kan CY, Yang JC. The effects of melt annealing and counterpart’s molecular weight on the thermal properties and phase morphology of poly(L-lactide)-based blends. J Polym Sci, Part B: Polym Phys. 2009;47:1497–510.CrossRefGoogle Scholar
  50. 50.
    Li J, Schultz JM, Chan C. The relationship between morphology and impact toughness of poly(L-lactic acid)/poly(ethylene oxide) blends. Polymer. 2015;63:179–88.CrossRefGoogle Scholar
  51. 51.
    Radhakrishnan S, Venkatachalapathy PD. Effect of casting solvent on the crystallization in PEO/PMMA blends. Polymer. 1996;3:3749–52.CrossRefGoogle Scholar
  52. 52.
    Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41:1352–7.CrossRefGoogle Scholar
  53. 53.
    Shen C, Wang Y, Li M, Hu D. Crystal modifications and multiple melting behavior of poly(L-lactic acid-co-D-lactic acid). J Polym Sci, Part B: Polym Phys. 2011;49:409–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Advanced Materials Processing and Mold (Ministry of Education)Zhengzhou UniversityZhengzhouChina
  2. 2.School of Mechanical EngineeringYellow River Conservancy Technical InstituteKaifengChina
  3. 3.State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalianChina

Personalised recommendations