Advertisement

Effect of plasticizer dibutyl phthalate on the thermal decomposition of nitrocellulose

  • Ruichao Wei
  • Shenshi Huang
  • Zhi Wang
  • Chengming Wang
  • Tiannian Zhou
  • Junjiang He
  • Richard Yuen
  • Jian Wang
Article

Abstract

This paper aims to investigate the effects of plasticizer dibutyl phthalate (DBP) on the thermal decomposition of nitrocellulose (NC) by using a series of analytical apparatuses. In the present study, the detailed structures of pure NC (NC-P) and NC with DBP (NC-D) were revealed by scanning electron microscope. It was found that the fibers in NC-D are more closely aligned than those in NC-P, which makes the thermal behaviors of NC-D different from NC-P. The thermal stability of both NC-P and NC-D was examined by means of simultaneous TG-DSC apparatus (STA). Three different kinetic methods (Kissinger–Akahira–Sunose method, Ozawa–Flynn–Wall method, and Friedman method) were applied for determining the activation energy E of these two NC samples. Moreover, the experimental data were compared with sigmoidal models and pre-exponential factor was calculated by compensation effect. Besides, in situ Fourier transform infrared (FTIR) and a TGA instrument coupled with Frontier FTIR spectrometer were employed to investigate the characteristic functional groups of decomposition residues and gaseous products at different temperatures, respectively. The results show that NC-P and NC-D have similar decomposition products and decomposition mechanisms.

Keywords

Nitrocellulose Dibutyl phthalate Thermal stability Reaction model Decomposition mechanisms 

List of symbols

A

Pre-exponential factor

c

A parameter of random scission kinetic functions

a − b

Compensation effect parameters

E

Activation energy (kJ mol−1)

f(α)

The dependence of the reaction rate on the extent of conversion

g(α)

The integral form of the reaction model

k(T)

The dependence of the reaction rate on temperature

m

A parameter of random scission kinetic functions

mt

Real-time sample mass in TG (mg)

mf

Mass after the reaction in TG (mg)

mi

Initial sample mass in TG (mg)

n

A constant in describing reaction model

p(x)

Temperature integral

R

One part of nitrocellulose, i.e., [C6H7O2(OH)3–x(ONO2)x–1]n

R0

Gas constant (J mol−1 K−1)

R2

Pearson’s correlation coefficient

t

Time

T

Temperature (°C)

Tα

Temperature at an fixed α

Ton

Onset decomposition temperature

Tmax

Maximum decomposition temperature

V

Stretching

W

Normalized mass

Greek symbols

α

Extent of conversion

β

Heating rate

τ

Deformation

ω

Wag

Subscripts

i

Different heating rates

max

Maximum

n

Degree of polymerization

on

Onset

s

Symmetric

as

Antisymmetric

x

The number of –ONO2

0.5

α = 0.5

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51376172) and the Grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (contract Grant Number CityU 11301015).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    Ossa MÁFDL, López-López M, Torre M, García-Ruiz C, et al. Analytical techniques in the study of highly-nitrated nitrocellulose. TrAC Trends Anal Chem. 2010;30(11):1740–55.CrossRefGoogle Scholar
  2. 2.
    Katoh K, Ito S, Ogata Y, Kasamatsu JI, Miya H, Yamamoto M, et al. Effect of industrial water components on thermal stability of nitrocellulose. J Therm Anal Calorim. 2010;99(1):159–64.CrossRefGoogle Scholar
  3. 3.
    Wei R, He Y, Zhang Z, He J, Yuen R, Wang J. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7235-6.CrossRefGoogle Scholar
  4. 4.
    Fu G, Wang J, Yan M. Anatomy of Tianjin Port fire and explosion: process and causes. Process Saf Prog. 2016;35(3):216–20.CrossRefGoogle Scholar
  5. 5.
    Zhao B. Facts and lessons related to the explosion accident in Tianjin Port, China. Nat Hazards. 2016;84(1):707–13.CrossRefGoogle Scholar
  6. 6.
    Katoh K, Soramoto T, Higashi E, Kawaguchi S, Kumagae K, Ito S, et al. Influence of water on the thermal stability of nitrocellulose. Sci Technol Energ Mater. 2014;75(1–2):44–9.Google Scholar
  7. 7.
    Hassan MA. Effect of malonyl malonanilide dimers on the thermal stability of nitrocellulose. J Hazard Mater. 2001;88(1):33–49.CrossRefPubMedGoogle Scholar
  8. 8.
    Lindblom T. Reactions in stabilizer and between stabilizer and nitrocellulose in propellants. Propellant Explos Pyrotech Int J Dealing Sci Technol Asp Energ Mater. 2002;27(4):197–208.CrossRefGoogle Scholar
  9. 9.
    Trache D, Tarchoun AF. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mater Sci. 2018;53(1):100–23.CrossRefGoogle Scholar
  10. 10.
    He Y, He Y, Liu J, Li P, Chen M, Wei R, et al. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202–12.CrossRefPubMedGoogle Scholar
  11. 11.
    Liu JH, Wang J, Xie QM, Wang JH, Tao CF, Yuen R. Effect of bulk density on the combustion property of nitrocellulose with isopropanol humectant. Propellants Explos Pyrotech. 2018;43(5):445–52.CrossRefGoogle Scholar
  12. 12.
    Wei R, Huang S, Huang Q, Ouyang D, Chen Q, Yuen R, et al. Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter. J Therm Anal Calorim. 2018.  https://doi.org/10.1007/s10973-018-7410-9.CrossRefGoogle Scholar
  13. 13.
    Guo S, Wang Q, Sun J, Liao X, Wang ZS. Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater. 2009;168(1):536–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Wei R, He Y, Liu J, He Y, Mi W, Yuen R, et al. Experimental study on the fire properties of nitrocellulose with different structures. Mater (Basel). 2017;10(3):316.CrossRefGoogle Scholar
  15. 15.
    Liu J, Chen M. A simplified method to predict the heat release rate of industrial nitrocellulose materials. Appl Sci. 2018;8(6):910.CrossRefGoogle Scholar
  16. 16.
    Shao ZQ, Wang WJ. Structure and properties of cellulose nitrate. Beijing: National Defense Industry Press; 2011 (in Chinese).Google Scholar
  17. 17.
    Phillips RW, Orlick CA, Steinberger R. The kinetics of the thermal decomposition of nitrocellulose. J Phys Chem. 1955;59(10):1034–9.CrossRefGoogle Scholar
  18. 18.
    Jutier JJ, Harrison Y, Premont S, Prud’Homme RE. A nonisothermal Fourier transform infrared degradation study of nitrocelluloses derived from wood and cotton. J Appl Polym Sci. 1987;33(4):1359–75.CrossRefGoogle Scholar
  19. 19.
    Kumita Y, Wada Y, Arai M, Tamura M. A study on thermal stability of nitrocellulose. J Jpn Explos Soc. 2002;63(5):271–4.Google Scholar
  20. 20.
    Makashir P, Mahajan R, Agrawal J. Studies on kinetics and mechanism of initial thermal decomposition of nitrocellulose. J Therm Anal. 1995;45(3):501–9.CrossRefGoogle Scholar
  21. 21.
    Wang Y, Liu R, Ning B, Pan Q, Hu R. A study of the thermal decomposition mechanism of nitrocellulose. Energ Mater Chengdu. 1998;6:157–68.Google Scholar
  22. 22.
    Jin M, Luo N, Li G, Luo Y. The thermal decomposition mechanism of nitrocellulose aerogel. J Therm Anal Calorim. 2015;121(2):901–8.CrossRefGoogle Scholar
  23. 23.
    Binke N, Rong L, Xianqi C, Yuan W, Hu RZ, Qingsen Y. Study on the melting process of nitrocellulose by thermal analysis method. J Therm Anal Calorim. 1999;58(2):249–56.CrossRefGoogle Scholar
  24. 24.
    Drysdale D. An introduction to fire dynamics. Hoboken: Wiley; 2011.CrossRefGoogle Scholar
  25. 25.
    Jessup RS, Prosen E. Heats of combustion and formation of cellulose and nitrocellulose (cellulose nitrate). J Res Natl Bur Stand. 1950;44:387.CrossRefGoogle Scholar
  26. 26.
    Jiang L, Xiao HH, He JJ, Sun Q, Gong L, Sun JH. Application of genetic algorithm to pyrolysis of typical polymers. Fuel Process Technol. 2015;138(7):48–55.CrossRefGoogle Scholar
  27. 27.
    Xu L, Jiang Y, Wang L. Thermal decomposition of rape straw: pyrolysis modeling and kinetic study via particle swarm optimization. Energy Convers Manag. 2017;146:124–33.CrossRefGoogle Scholar
  28. 28.
    Jiang L, Zhang D, Li M, He J-J, Gao Z-H, Zhou Y, et al. Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel. 2018;222:11–20.CrossRefGoogle Scholar
  29. 29.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  30. 30.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.Google Scholar
  31. 31.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  32. 32.
    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci, Part C: Polym Lett. 1966;4(5):323–8.Google Scholar
  33. 33.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38(11):1881–6.CrossRefGoogle Scholar
  34. 34.
    Friedman HL (ed). Kinetics of thermal degradation of char–forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;6(1):183–95.CrossRefGoogle Scholar
  35. 35.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta. 2013;552:54–9.CrossRefGoogle Scholar
  36. 36.
    Sánchezjiménez PE, Pérezmaqueda LA, Perejón A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114(30):7868–76.CrossRefGoogle Scholar
  37. 37.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95(5):733–9.CrossRefGoogle Scholar
  38. 38.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Constant rate thermal analysis for thermal stability studies of polymers. Polym Degrad Stab. 2011;96(5):974–81.CrossRefGoogle Scholar
  39. 39.
    Mamleev V, Bourbigot S, Bras ML, Yvon J, Lefebvre J. Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition. Chem Eng Sci. 2006;61(4):1276–92.CrossRefGoogle Scholar
  40. 40.
    Varhegyi G, Jakab E Jr, Antal MJ. Is the Broido–Shafizadeh model for cellulose pyrolysis true? Energy Fuels. 1994;8(6):1345–52.CrossRefGoogle Scholar
  41. 41.
    Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Pascual-Cosp J, Benítez-Guerrero M, Criado JM. An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose. 2011;18(6):1487–98.CrossRefGoogle Scholar
  42. 42.
    Mamleev V, Bourbigot S, Bras ML, Yvon J. The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: interdependence of the steps. J Anal Appl Pyrol. 2009;84(1):1–17.CrossRefGoogle Scholar
  43. 43.
    Vyazovkin S. Advanced isoconversional method. J Therm Anal Calorim. 1997;49(3):1493–9.CrossRefGoogle Scholar
  44. 44.
    Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40.CrossRefGoogle Scholar
  45. 45.
    Herzberg G Jr, Bryce L. Infrared and Raman spectra of polyatomic molecules. Journal of Chemical Physics. 1941;9(11):780–5.CrossRefGoogle Scholar
  46. 46.
    Ling-Xue YI, Gao L, Zhao LJ, Jiang C, Zhao K. Dibutyl phthalate theoretical analysis and detection in infrared. Spectrosc Spectr Anal. 2016;36(9):2782–92.Google Scholar
  47. 47.
    Moharram MA, Nasr TZAE, Hakeem NA. X-Ray diffraction and infrared studies on the effect of thermal treatments on cotton celluloses I and II. J Polym Sci Polym Lett Ed. 1981;19(4):183–7.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ruichao Wei
    • 1
    • 2
  • Shenshi Huang
    • 1
    • 2
  • Zhi Wang
    • 1
  • Chengming Wang
    • 3
  • Tiannian Zhou
    • 1
  • Junjiang He
    • 1
    • 2
  • Richard Yuen
    • 2
  • Jian Wang
    • 1
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Department of Civil and Architectural EngineeringCity University of Hong KongHong KongPeople’s Republic of China
  3. 3.Hefei National Laboratory for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations