Advertisement

Numerical investigation of MHD effects on nanofluid heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method

  • Yuan Ma
  • Rasul Mohebbi
  • M. M. Rashidi
  • O. Manca
  • Zhigang Yang
Article
  • 8 Downloads

Abstract

Lattice Boltzmann method (LBM) was carried out to investigate the effects of magnetic field and nanofluid on the natural convection heat transfer in a baffled U-shaped enclosure. The combination of different specifications of the baffle, LBM, nanofluid and magnetic field is the main innovation in the present study. In order to consider the effect of Brownian motion on the thermal conductivity, Koo–Kleinstreuer–Li model is used to define thermal conductivity and viscosity of nanofluid. Effects of Rayleigh number, Hartmann number, nanoparticle volume fraction, height and position of the baffle on the fluid flow and heat transfer characteristics have been examined. It was found that raising the Rayleigh number and nanoparticle solid volume fraction leads to increase the average Nusselt number irrespective of the position of the hot obstacle. However, the heat transfer rate is suppressed by the magnetic field. The heat transfer enhancement by introducing nanofluid decreases as increasing Rayleigh number, but it increases as increasing the Hartmann number. Moreover, the maximum heat transfer rate was observed when the enclosure equipped with a baffle with (s, h) = (0.2, 0.3) or (0.4, 0.3).

Keywords

Magnetic field Nanofluid Natural convection Baffle LBM U-shaped Enclosure 

List of symbols

s

Position of the baffle

h

Length of the baffle

ei

Discrete lattice velocity in direction

f

Density distribution function

feq

Equilibrium density distribution function

Ha

Hartmann number

Nu

Nusselt number

U, V

Nondimensional velocity components

Pr

Prandtl number

H

Height of the enclosure

W

Weight of the enclosure

cs

Speed of sound in Lattice scale

g

Energy distribution function

geq

Equilibrium energy distribution function

kB

Boltzmann constant

T

Fluid temperature

k

Thermal conductivity

Greek symbols

ωi

Weight function in direction i

ϕ

Volume fraction

τc

Relaxation time for temperature

α

Thermal diffusivity

ρ

Density

τv

Relaxation time for flow

β

Thermal expansion coefficient

μ

Dynamic viscosity

Subscripts

loc

Local

s

Solid particles

nf

Nanofluid

c

Cold

ave

Average

f

Fluid

h

Hot

i

Move direction of single particle

Notes

Acknowledgements

M. M. Rashidi extends his appreciation to the program: H2020 for supporting this work through the Research Project 701693.

References

  1. 1.
    Sheikholeslami M. Numerical simulation of magnetic nanofluid natural convection in porous media. Phys Lett A. 2017;381(5):494–503.CrossRefGoogle Scholar
  2. 2.
    Afrand M, Toghraie D, Karimipour A, Wongwises S. A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater. 2017;430:22–8.CrossRefGoogle Scholar
  3. 3.
    Bondareva NS, Sheremet MA. Natural convection heat transfer combined with melting process in a cubical cavity under the effects of uniform inclined magnetic field and local heat source. Int J Heat Mass Transf. 2017;108:1057–67.CrossRefGoogle Scholar
  4. 4.
    Sajjadi H, Delouei AA, Atashafrooz M, Sheikholeslami M. Double MRT lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int J Heat Mass Transf. 2018;126:489–503.CrossRefGoogle Scholar
  5. 5.
    Al-Najem NM, Khanafer KM, El-Refaee MM. Numerical study of laminar natural convection in tilted enclosure with transverse magnetic field. Int J Numer Meth Heat Fluid Flow. 1998;8(6):651–72.CrossRefGoogle Scholar
  6. 6.
    Sathiyamoorthy M, Chamkha A. Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall(s). Int J Therm Sci. 2010;49(9):1856–65.CrossRefGoogle Scholar
  7. 7.
    Öztop HF, Rahman MM, Ahsan A, Hasanuzzaman M, Saidur R, Al-Salem K, Rahim NA. MHD natural convection in an enclosure from two semi-circular heaters on the bottom wall. Int J Heat Mass Transf. 2012;55(7–8):1844–54.CrossRefGoogle Scholar
  8. 8.
    Sheikholeslami M, Gorji-Bandpay M, Ganji DD. Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid. Int Commun Heat Mass Transfer. 2012;39(7):978–86.CrossRefGoogle Scholar
  9. 9.
    Sheikholeslami M, Hatami M, Ganji DD. Analytical investigation of MHD nanofluid flow in a semi-porous channel. Powder Technol. 2013;246:327–36.CrossRefGoogle Scholar
  10. 10.
    Hatami M, Nouri R, Ganji DD. Forced convection analysis for MHD Al2O3–water nanofluid flow over a horizontal plate. J Mol Liq. 2013;187:294–301.CrossRefGoogle Scholar
  11. 11.
    Mahmoudi AH, Pop I, Shahi M, Talebi F. MHD natural convection and entropy generation in a trapezoidal enclosure using Cu–water nanofluid. Comput Fluids. 2013;72:46–62.CrossRefGoogle Scholar
  12. 12.
    Sheikholeslami M, Gorji-Bandpy M, Ganji DD. MHD free convection in an eccentric semi-annulus filled with nanofluid. J Taiwan Inst Chem Eng. 2014;45(4):1204–16.CrossRefGoogle Scholar
  13. 13.
    Selimefendigil F, Öztop HF. Numerical study of MHD mixed convection in a nanofluid filled lid driven square enclosure with a rotating cylinder. Int J Heat Mass Transf. 2014;78:741–54.CrossRefGoogle Scholar
  14. 14.
    Sheikholeslami M, Rashidi MM. Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid. J Taiwan Inst Chem Eng. 2015;56:6–15.CrossRefGoogle Scholar
  15. 15.
    Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.CrossRefGoogle Scholar
  16. 16.
    Karimnejad S, Delouei AA, Nazari M, Shahmardan MM, Mohamad AA. Sedimentation of elliptical particles using immersed boundary-lattice Boltzmann method: a complementary repulsive force model. J Mol Liq. 2018;262:180–93.CrossRefGoogle Scholar
  17. 17.
    Delouei AA, Nazari M, Kayhani MH, Kang SK, Succi S. Non-Newtonian particulate flow simulation: a direct-forcing immersed boundary–lattice Boltzmann approach. Physica A. 2016;447:1–20.CrossRefGoogle Scholar
  18. 18.
    Delouei AA, Nazari M, Kayhani MH, Ahmadi G. A non-Newtonian direct numerical study for stationary and moving objects with various shapes: an immersed boundary–Lattice Boltzmann approach. J Aerosol Sci. 2016;93:45–62.CrossRefGoogle Scholar
  19. 19.
    Mohebbi R, Rashidi MM, Izadi M, Sidik NAC, Xian HW. Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int J Heat Mass Transf. 2018;117:1291–303.CrossRefGoogle Scholar
  20. 20.
    Delouei AA, Nazari M, Kayhani MH, Ahmadi G. Direct-forcing immersed boundary–non-Newtonian lattice Boltzmann method for transient non-isothermal sedimentation. J Aerosol Sci. 2017;104:106–22.CrossRefGoogle Scholar
  21. 21.
    Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29(12):122009.CrossRefGoogle Scholar
  22. 22.
    Delouei AA, Nazari M, Kayhani MH, Succi S. Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary–thermal lattice Boltzmann method. Phys Rev E. 2014;89(5):053312.CrossRefGoogle Scholar
  23. 23.
    Delouei AA, Nazari M, Kayhani MH, Succi S. Immersed boundary–thermal lattice Boltzmann methods for non-Newtonian flows over a heated cylinder: a comparative study. Commun Comput Phys. 2015;18(2):489–515.CrossRefGoogle Scholar
  24. 24.
    Kefayati GHR, Gorji-Bandpy M, Sajjadi H, Ganji DD. Lattice Boltzmann simulation of MHD mixed convection in a lid-driven square cavity with linearly heated wall. Sci Iran. 2012;19(4):1053–65.CrossRefGoogle Scholar
  25. 25.
    Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM. Energy. 2013;60:501–10.CrossRefGoogle Scholar
  26. 26.
    Zhou WN, Yan YY. Numerical investigation of the effects of a magnetic field on nanofluid flow and heat transfer by the lattice Boltzmann method. Numer Heat Transf Part A Appl. 2015;68(1):1–16.CrossRefGoogle Scholar
  27. 27.
    Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a shaped cavity filled by a MWCNT-Fe3O4/water hybrid nanofluids using LBM. Chem Eng Process. 2018;125:56–66.CrossRefGoogle Scholar
  28. 28.
    Sheikholeslami M. Numerical investigation for CuO-H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.CrossRefGoogle Scholar
  29. 29.
    Peng Y, Shu C, Chew YT. Simplified thermal lattice Boltzmann model for incompressible thermal flows. Phys Rev E Stat, Nonlin, Soft Matter Phys. 2003;68(2 Pt 2):026701.Google Scholar
  30. 30.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30(3):032001.CrossRefGoogle Scholar
  31. 31.
    Ma Y, Mohebbi R, Rashidi MM, Yang Z. Numerical simulation of flow over a square cylinder with upstream and downstream circular bar using lattice Boltzmann method. Int J Modern Phys C in press. https://doi.org/10.1142/s0129183118500304.
  32. 32.
    Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 2008;94(3):511–25.CrossRefGoogle Scholar
  33. 33.
    Mohamad AA, Kuzmin AA. critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Transf. 2010;53(5):990–6.CrossRefGoogle Scholar
  34. 34.
    Wei Y, Dou HS, Wang Z. Simulations of natural convection heat transfer in an enclosure at different Rayleigh number using lattice Boltzmann method. Comput Fluids. 2016;124:30–8.CrossRefGoogle Scholar
  35. 35.
    Qian YH, d’Humières D, Lallemand P. Lattice BGK models for Navier–Stokes equation. EPL. 1992;17(6):479–84.CrossRefGoogle Scholar
  36. 36.
    Yan YY, Zu YQ. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder–a LBM approach. Int J Heat Mass Transf. 2008;51(9):2519–36.CrossRefGoogle Scholar
  37. 37.
    Zou Q, He X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997;9(6):1591–8.CrossRefGoogle Scholar
  38. 38.
    Inamuro T, Yoshino M, Ogino F. A non-slip boundary condition for lattice Boltzmann simulations. Phys Fluids. 1995;7(12):2928–30.CrossRefGoogle Scholar
  39. 39.
    Mohamad AA. Applied lattice Boltzmann method for transport phenomena, momentum, heat and mass transfer. Can J Chem Eng. 2007;85(6):946.Google Scholar
  40. 40.
    Sheikholeslami M, Ashorynejad HR, Rana P. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. J Mol Liq. 2016;214:86–95.CrossRefGoogle Scholar
  41. 41.
    Koo J, Kleinstreuer C. Viscous dissipation effects in microtubes and microchannels. Int J Heat Mass Transf. 2004;47(14–16):3159–69.CrossRefGoogle Scholar
  42. 42.
    Koo J. Computational nanofluid flow and heat transfer analyses applied to microsystems. Ph.D Thesis. Raleigh, NC: NC State University, 2004.Google Scholar
  43. 43.
    Prasher RS, Bhattacharya P, Phelan PE. Thermal conductivity of nano scale colloidal solution. Phys Rev Lett. 2005;94:025901.CrossRefGoogle Scholar
  44. 44.
    Jang SP, Choi SUS. The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84(21):4316–8.CrossRefGoogle Scholar
  45. 45.
    Li J. Computational analysis of nanofluid flow in micro channels with applications to micro-heat sinks and bio-MEMS. PhD Thesis. Raleigh, NC, the United States: NC State University, 2008.Google Scholar
  46. 46.
    Koo J, Kleinstreuer C. Laminar nanofluid flow in microheat-sinks. Int J Heat Mass Transf. 2005;48:2652–61.CrossRefGoogle Scholar
  47. 47.
    Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.CrossRefGoogle Scholar
  48. 48.
    Koo J, Kleinstreuer C. Viscous dissipation effects in micro tubes and micro channels. Int J Heat Mass Transf. 2004;47:3159–69.CrossRefGoogle Scholar
  49. 49.
    Mahmoodi M, Seyed MH. Numerical study of natural convection of a nanofluid in C-shaped enclosures. Int J Therm Sci. 2012;55:76–89.CrossRefGoogle Scholar
  50. 50.
    Ghasemi B, Aminossadati SM, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50(9):1748–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Shanghai Automotive Wind Tunnel Center, Tongji UniversityShanghaiChina
  2. 2.Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management SystemsShanghaiChina
  3. 3.School of EngineeringDamghan UniversityDamghanIran
  4. 4.Department of Civil Engineering, School of EngineeringUniversity of BirminghamBirminghamUK
  5. 5.Dipartimento di IngegneriaUniversità degli Studi della Campania “Luigi Vanvitelli”AversaItaly

Personalised recommendations