Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 6, pp 3129–3140 | Cite as

Non-isothermal crystallization kinetics and degradation kinetics studies on barium thioglycolate end-capped poly(ε-caprolactone)

  • S. Mahalakshmi
  • T. Alagesan
  • V. Parthasarathy
  • Kuo-Lun TungEmail author
  • R. AnbarasanEmail author


The poly(ε-caprolactone) (PCL) was synthesized by ring-opening polymerization at 160 °C under nitrogen atmosphere for 2 h by bulk polymerization method in the presence of barium thioglycolate (Ba-TG) as an initiator and stannous octoate as a catalyst. The monomer-to-initiator ratio was maintained at 400. The Ba-TG end-capped PCL was characterized by various analytical tools like FTIR spectroscopy, NMR spectroscopy, AFM, DSC, TGA, POM and HRTEM. The non-isothermal crystallization kinetic study was executed with the help of DSC in order to determine the rate at which nucleation formation and spherulitic growth take place. The thermal degradation kinetic studies were performed with the help of TGA to know the degradation rate as well as energy of activation (Ea) using different non-isothermal kinetic models. The main aim of the present investigation is to determine the role of chain end-capping agent (Ba-TG) on the crystallization and degradation process of PCL. It was found that the Ba-TG induced the 3D spherulitic crystal growth of PCL.


Poly(ε-caprolactone) Degradation kinetics Crystallization kinetics AFM HRTEM 

Supplementary material

10973_2018_7514_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)


  1. 1.
    Salgado CL, Sanchez EMS, Zavaglia CAC, Granja PL. Bio-compatibility and bio-degradability of poly(caprolactone)-sebacic acid blended gels. J Biomed Mat Res Part A. 2012;100A:243–51.CrossRefGoogle Scholar
  2. 2.
    Zairs S, Brown TD, Reichert JC, Berner A. Poly(caprolactone) scaffolds fabricated by melt electrospinning for bone tissue engineering. Materials. 2016;9:232–46.CrossRefGoogle Scholar
  3. 3.
    Jiang L, Lou L, Sun W, Xu L, Shen Z. Ring opening polymerization of caprolactone with a divalent samarium bis(phosphido) complex. J Appl Polym Sci. 2005;98:1558–64.CrossRefGoogle Scholar
  4. 4.
    Dobizyski P, Li S, Kaspersczyk J, Bero M, Gasc F, Vert M. Structure-property relationship of copolymer obtained by ring opening polymerization of glycolide and caprolactone, part-1. Synthesis and characterization. Biomacromolecules. 2005;6:483–8.CrossRefGoogle Scholar
  5. 5.
    Contreras JM, Medina D, Carrasquero FL, Contreras RB. Ring opening polymerization of caprolactone initiated by samarium acetae. J Polym Res. 2013;20:244–50.CrossRefGoogle Scholar
  6. 6.
    Monelave M, Contreras JM, Laredo E, Carrasquero FL. Ring opening polymerization of (R, S)-β-butyrolactone and caprolactone using sodiumhydride as initiator. Express Polym Lett. 2010;7:431–41.Google Scholar
  7. 7.
    Sivabalan A, Meenarathi B, Palanikumar S, Anbarasan R. Synthesis and characterization of poly(caprolactone): a comparative study. Int J Sci Res Eng Technol. 2014;1:9–14.Google Scholar
  8. 8.
    Cayuela J, Legare VB, Cassagnou P, Michel A. Ring opening polymerization of caproalctone initiated with titanium n-propoxide or titanium phenoxide. Macromolecules. 2006;39:1338–46.CrossRefGoogle Scholar
  9. 9.
    Kannammal L, Palanikumar S, Meenarathi B, Anbarasan R. Synthesis, characterization and band gap study of calcium mercaptosuccinate. J Thermoplast Compos Mater. 2017;30:1056–68.CrossRefGoogle Scholar
  10. 10.
    Meenarathi B, Siva P, Palanikumar S, Kannammal L, Anbarasan R. Synthesis, characterization and drug release activity of poly(caprolactone)/Fe3O4 nanocomposites. Nanocomposites. 2016;2:98–107.CrossRefGoogle Scholar
  11. 11.
    Rajkumar B, Dhanalakshmi T, Meenarathi B, Anbarasan R. Synthesis and characterization of novel fluorescent amphiphilic diblock copolymers. Polym Bull. 2016;73:2147–63.CrossRefGoogle Scholar
  12. 12.
    Jeyapriya M, Meenarathi B, Anbarasan R. Synthesis, characterization, catalytic activity and splinting activity of nano Ag end capped l-glutathione bridged amphiphilic diblock copolymer. J Appl Polym Sci. 2016;133:1–11.CrossRefGoogle Scholar
  13. 13.
    Murugesan A, Meenarathi B, Kannammal L, Anbarasan R. Synthesis, characterization and application of poly(sulfanilicacid) based triblock copolymer. Adv Polym Technol. 2016;26:1–9.Google Scholar
  14. 14.
    Kailash S, Meenarathi B, Palanikumar S, Anbarasan R. Synthesis, characterization, drug delivery and splinting activity of folic acid bridged poly(caprolactone-co-tetrahydrofuran). Int J Polym Mater Polym Biomater. 2015;64:620–7.CrossRefGoogle Scholar
  15. 15.
    Sowkath A, Ahmad M, Anbarasan R. Ring opening polymerization ε-caprolactone by Schiff base metal complexes. Int J Chem Biol Sci. 2014;1:1–12.Google Scholar
  16. 16.
    Chrissafis K, Antoniadis G, Paraskevopoulos KM, Vassiliou A, Bikiaris DN. Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites. Compos Sci Technol. 2007;67:2165–74.CrossRefGoogle Scholar
  17. 17.
    Nanaki SG, Papageorgiou GZ, Bikiaris DN. Crystallization of novel poly(ε-caprolactone)-block-poly(propyleneadipate) copolymers. J Therm Anal Calorim. 2012;108:633–45.CrossRefGoogle Scholar
  18. 18.
    Luduen L, Vazquez A, Alvarez V. Viscoelastic behavior of poly(caprolactone)/clay nanocomposites. J Compos Mater. 2012;46:677–89.CrossRefGoogle Scholar
  19. 19.
    Gopinathan J, Pillai M, Elakkiy V, Selvakumar R, Bhattacharyya A. Carbon nanofillers incorporated electrically conducting poly(caprolactone) nanocomposite films and their biocompatibility studies using MG-63 cell line. Polym Bull. 2016;73:1037–53.CrossRefGoogle Scholar
  20. 20.
    Wng XL, Huang FY, Zhou Y, Wang YZ. Non-isothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites. J Macromol Sci Part B Phys. 2009;48:710–22.CrossRefGoogle Scholar
  21. 21.
    Saeed K, Park SY. Preparation and properties of poly(caprolactone)/poly(butylenes terephthalate) blend, Iran. J Chem Eng. 2010;29:77–81.Google Scholar
  22. 22.
    Kawazu K, Nakagawa S, Ishizone T, Nojima S, Arai D, Yamaguchi K, Nakahama S. Effects of bulky end groups on the crystallization kinetics of poly(caprolactone) homopolymers confined in a cylindrical nanodomain. Macromolecules. 2017;50:7202–10.CrossRefGoogle Scholar
  23. 23.
    Huo H, Yang Y, Zhao X. Effects of lithium perchlorate on the nucleation and crystallization of PEO and PCL in the PEO–PCL–lithium perchlorate ternary blend. CrystEngComm. 2014;16:1351–8.CrossRefGoogle Scholar
  24. 24.
    Jenkins MJ, Harrison KL. The effect of molecular weight on the crystallization kinetics of poly(caprolactone). Polym Adv Technol. 2006;17:474–8.CrossRefGoogle Scholar
  25. 25.
    Marquez Y, Franco L, Puiggali J. Thermal degradation studies of poly(trimetylene carbonate) blends with either polylactide or poly(caprolactone). Thermochim Acta. 2012;550:65–75.CrossRefGoogle Scholar
  26. 26.
    Peng H, Han Y, Liu T, He C. Morphology and thermal degradation behaviour of highly exfoliated Co–Al layered double hydroxide/poly(caprolactone) nanocomposites prepared by simple solution intercalation. Thermochim Acta. 2010;502:1–7.CrossRefGoogle Scholar
  27. 27.
    Nanaki SG, Chuissafis K, Bikiaris DN. Effect of molar ratio on the mass loss kinetics of poly(caprolactone-co-propyleneadipate) copolymers. Thermochim Acta. 2011;517:45–52.CrossRefGoogle Scholar
  28. 28.
    Carmoona VB, Compos AD, Marcocini JM, Mattoso C. Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Thermal Anal Calorim. 2014;115:153–60.CrossRefGoogle Scholar
  29. 29.
    Joshi P, Madras G. Degradation of poly(caprolactone) in supercritical fluids. Polym Degrad Stab. 2008;93:1901–8.CrossRefGoogle Scholar
  30. 30.
    Maiti ASN, Jacob J. Non-isothermal crystallization and micro-structural behaviour of poly(caprolactone) and tapioca starch based bio-composites. Int J Polym Anal Charact. 2017;22:222–36.CrossRefGoogle Scholar
  31. 31.
    Jancirani A, Kohila V, Meenarathi B, Yellilarasi A, Anbarasan R. Synthesis, characterization and non-isothermal degradation kinetics of poly(monoethyleneglycol dimethacrylate-co-4-aminobenzoate). Bull Mater Sci. 2016;39:1725–33.CrossRefGoogle Scholar
  32. 32.
    Terzopoulou Z, Baciu D, Gounari E, Steriotis T, Bikiaris D. Biocompatible nanobiogels reinforced poly(caprolactone) composites synthesized via insitu ring opening polymerization. Polymers. 2018;10:381–407.CrossRefGoogle Scholar
  33. 33.
    Roumeli E, Papageorgiou DG, Tsanaktsis V, Terzopoulou Z, Chrissafis K, Bikiaris DN. Amino functionalized multiwalled carbon nanotube lead to successful ring opening polymerization of poly(caprolactone): enhanced interfacial bonding and optimized mechanical properties. Appl Mater Interfaces. 2015;7:11683–94.CrossRefGoogle Scholar
  34. 34.
    Terzopoulou Z, Papageorgiou DG, Papageorgiou GZ, Bikiaris DN. Effect of surface functionalization of halloysite nanotubes on synthesis and thermal properties of ply(caproalctone). J Mater Sci. 2018;53:6519–41.CrossRefGoogle Scholar
  35. 35.
    Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN. Non-isothermal crystallization kinetics of insitu prepared poly(caprolactone)/surface treated SiO2 nanocomposites. Macromol Chem Phys. 2007;208:364–76.CrossRefGoogle Scholar
  36. 36.
    Lin L, Xu Y, Qin J, Wang S, Xiao M, Meng Y. Correlation between crystallization behavior and mechanical properties of biodegradable poly(caprolactone-co-cyclohexene carbonate). Polym Plast Technol Eng. 2017;42:1–12.Google Scholar
  37. 37.
    Nerantzaki M, Papageorgiou GZ, Bikiaris DN. Effect of nanofillers type on the thermal properties and enzymatic degradation of poly(caprolactone). Polym Degrad Stab. 2014;108:257–68.CrossRefGoogle Scholar
  38. 38.
    Papageorgiou DG, Roumeli E, Terzopoulou Z, Tsanaktsis V, Chrissafis K, Bikiaris DN. Poly(caproalctone)/MWCNT nanocomposites prepared by insitu ring opening polymerization: decomposition property using thermogravimetric analysis and analytical pyrolysis gas chromatography/mass spectroscopy. J Anal Appl Pyrolysis. 2015;115:125–31.CrossRefGoogle Scholar
  39. 39.
    Terzopoulou Z, Bikiaris DN, Potsi G, Gournis D, Papageorgiou GZ, Rudolf P. Mechanical, thermal and decomposition behaviour of poly(caprolactone) nanocomposites with clay supported carbon nanotube hybrids. Thermochim Acta. 2016;642:67–80.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of PhysicsAnand Institute of Higher TechnologyKazhipattur, ChennaiIndia
  2. 2.Department of PhysicsPresidency CollegeChennaiIndia
  3. 3.Department of PhysicsHindustan UniversityPadur, ChennaiIndia
  4. 4.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations