Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1531–1543 | Cite as

Crystallization and mechanical properties of basalt fiber-reinforced polypropylene composites with different elastomers

  • Lin Sang
  • Guojun Zheng
  • Wenbin Hou
  • Xiaoli Yang
  • Zhiyong Wei
Article
  • 135 Downloads

Abstract

In this study, composites based on polypropylene (PP), basalt fiber (BF), polypropylene-graft-maleic anhydride (MAPP) and different elastomers were manufactured by extrusion compounding and injection molding. The main focus of this study was to comparatively investigate the effect of three kinds of elastomers (ethylene–propylene–diene monomer (EPDM), polyethylene–octene (POE) and ethylene–vinyl–acetate (EVA)) on non-isothermal crystallization and mechanical properties of the composites with various BF contents. The tensile test results showed that BF had a reinforcing effect on PP resin, and the addition of MAPP further improved the tensile properties by the enhancement of PP/BF interfacial bonding. Among the elastomers, EPDM was more effective in improving the tensile strength and tensile modulus, while POE significantly toughened the impact strength. Micrographs of scanning electron microscope on the impact fracture surfaces indicated a good dispersion by the addition of POE and EPDM, while some agglomerations were observed in the presence of EVA. The non-isothermal crystallization kinetics were investigated based on Avrami and Mo equations at six different cooling rates by using differential scanning calorimetry. Micrographic images of polarized optical microscopy showed that the spherulite size of PP reduced in the presence of EPDM and EVA.

Keywords

Polypropylene (PP) Basalt fiber (BF) Elastomers Mechanical properties Crystallization behavior 

Notes

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (DUT17RC(4)57) and the China Postdoctoral Science Foundation (2015M571300).

References

  1. 1.
    Saeb DN, Jog JP. Natural fiber polymer composites: a review. Adv Polym Technol. 1999;18:351–63.CrossRefGoogle Scholar
  2. 2.
    Thomason JL, Kao CC, Ure J, Yang L. The strength of glass fibre reinforcement after exposure to elevated composite processing temperatures. J Mater Sci. 2014;49:153–62.CrossRefGoogle Scholar
  3. 3.
    Dai X, Wang ZX, Zhang XH, Xu S, Zhang SX, Cao M, Jiang XD. Preparation and crystallization of isotactic polypropylene composites filled by titanium dioxide-supported montmorillonite with a β-nucleating surface. J Therm Anal Calorim. 2018;132:947–953.CrossRefGoogle Scholar
  4. 4.
    Pérez E, Alvarez V, Pérez CJ, Bernal C. A comparative study of the effect of different rigid fillers on the fracture and failure behavior of polypropylene based composites. Compos Part B. 2013;52:72–83.CrossRefGoogle Scholar
  5. 5.
    Tian HF, Zhang S, Ge X, Xiang AM. Crystallization behaviors and mechanical properties of carbon fiber-reinforced polypropylene composites. J Therm Anal Calorim. 2017;128:1495–504.CrossRefGoogle Scholar
  6. 6.
    Panaitescu DM, Vuluga Z, Ghiurea M, Lorga M, Nicolae C, Gabor R. Influence of compatibilizing system on morphology, thermal and mechanical properties of high flow polypropylene reinforced with short hemp fibers. Compos Part B. 2015;69:286–95.CrossRefGoogle Scholar
  7. 7.
    Karsli NG, Yesil S, Aytac A. Effect of hybrid carbon nanotube/short glass fiber reinforcement on the properties of polypropylene composites. Compos Part B. 2014;63:154–60.CrossRefGoogle Scholar
  8. 8.
    Wu JH, Chen CW, Wu YT, Wu GT, Kuo MC, Tsai Y. Mechanical properties, morphology, and crystallization behavior of polypropylene/elastomer/talc composites. Polym Compos. 2015;36:69–77.CrossRefGoogle Scholar
  9. 9.
    Kotter I, Grellmann W, Koch T, Seidler S. Morphology-toughness correlation of polypropylene–propylene rubber blends. J Appl Polym Sci. 2006;100:3364–71.CrossRefGoogle Scholar
  10. 10.
    Rafiee F, Otadi M, Goodarzi V, Ali Khonakdar H, Hassan Jafari S, Mardani E, Reuter U. Thermal and dynamic mechanical properties of PP/EVA nanocomposites containing organo-modified layered double hydroxides. Compos Part B. 2016;103:122–30.CrossRefGoogle Scholar
  11. 11.
    Lima P, Oliveira J, Costa V. Partial replacement of EPDM by GTR in thermoplastic elastomers based on PP/EPDM: effects on morphology and mechanical properties. J Appl Polym Sci. 2014;131:631–44.CrossRefGoogle Scholar
  12. 12.
    Liang JZ, Zhu B, Ma WY. Morphology and mechanical properties of PP/POE/nano CaCO3 composites. Polym Compos. 2016;37:539–46.CrossRefGoogle Scholar
  13. 13.
    Parameswaranpillai J, Joseph G, Shinu KP, Jose S, Salim NV, Hameed N. Development of hybrid composites for automotive applications: effect of addition of SEBS on the morphology, mechanical, viscoelastic, crystallization and thermal degradation properties of PP/PS-xGnP composites. RSC Adv. 2015;5:25634–41.CrossRefGoogle Scholar
  14. 14.
    Zheng L, Wu T, Kong QH, Zhang JH, Liu H. Improving flame retardancy of PP/MH/RP composites through synergistic effect of organic CoAl-layered double hydroxide. J Therm Anal Calorim. 2017;129:1039–46.CrossRefGoogle Scholar
  15. 15.
    Nasihatgozar M, Daghigh V Jr, Daghigh TEL, Nikbin K, Simoneau A. Mechanical characterization of novel latania natural fiber reinforced PP/EPDM composites. Polym Test. 2016;56:321–8.CrossRefGoogle Scholar
  16. 16.
    Mata-Padilla JM, Medellin-Rodriguez FJ, Avila-Orta CA, Ramirez-Vargas E, Cadenas-Pliego G, Valera-Zaragoza M, Vega-Diaz SM. Morphology and chain mobility of reactive blend nanocomposites of PP-EVA/Clay. J Appl Polym Sci. 2014;131:1366–73.CrossRefGoogle Scholar
  17. 17.
    Perez CJ, Alvarez VA. Non-isothermal crystallization of biodegradable polymer (MaterBi)/polyolefin (PP)/hemp fibres ternary composites. J Therm Anal Calorim. 2015;120:1445–55.CrossRefGoogle Scholar
  18. 18.
    Wei B, Cao HL, Song SH. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater Des. 2010;31:4244–50.CrossRefGoogle Scholar
  19. 19.
    Uthaipan N, Jarnthong M, Peng Z, Junhasavasdikul B, Nakason C, Thitithammawong A. Effects of cooling rates on crystallization behavior and melting characteristics of isotactic polypropylene as neat and in the TPVs EPDM/PP and EOC/PP. Polym Test. 2015;44:101–11.CrossRefGoogle Scholar
  20. 20.
    Lopresto V, Leone C, De Iorio I. Mechanical characterization of basalt fibre reinforced plastic. Compos Part B Eng. 2011;42:717–23.CrossRefGoogle Scholar
  21. 21.
    Yu A, Kadykova A. Structural polymeric composite material reinforced with basalt fiber. Russ J Appl Chem. 2012;85:1434–8.CrossRefGoogle Scholar
  22. 22.
    Li Y, Sang L, Wei ZY, Ding C, Chang Y, Chen GY, Zhang WX, Liang JC. Mechanical properties and crystallization behavior of poly(butylene succinate) composites reinforced with basalt fiber. J Therm Anal Calorim. 2015;122:261–70.CrossRefGoogle Scholar
  23. 23.
    Jolfaei AF, Gavgani JN, Jalali A, Goharpey F. Effect of organoclay and compatibilizers on microstructure, rheological and mechanical properties of dynamically vulcanized EPDM/PP elastomers. Polym Bull. 2015;72:1127–44.CrossRefGoogle Scholar
  24. 24.
    Thoma S, George A. Dynamic mechanical properties of thermoplastic elastomers from blends of polypropylene with copolymers of ethylene with vinyl acetate. Eur Polym J. 1992;28:1451–8.CrossRefGoogle Scholar
  25. 25.
    Goodarzi V, Jafari SH, Khonakdar HA, Seyfi J. Morphology, rheology and dynamic mechanical properties of PP/EVA/clay nanocomposites. J Polym Res. 2011;18:1829–39.CrossRefGoogle Scholar
  26. 26.
    Vengatesan MR, Singh S, Pillai VV, Mittal V. Crystallization, mechanical, and fracture behavior of mullite fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci. 2016;133:43275.CrossRefGoogle Scholar
  27. 27.
    Liu X, Tang YR, Zhang BW, Chen FX, Wu WL. Nonisothermal crystallization kinetics of polypropylene composites reinforced with down feather fiber. Polym Compos. 2016;37:3103–12.CrossRefGoogle Scholar
  28. 28.
    Nayak SK, Mohanty S, Samal SK. Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater Sci Eng A. 2009;532:32–8.CrossRefGoogle Scholar
  29. 29.
    Lee SO, Choi SH, Kwon SH, Rhee KY, Park SJ. Modification of surface functionality of multi-walled carbon nanotubes on fracture toughness of basalt fiber-reinforced composites. Compos Part B. 2015;79:47–52.CrossRefGoogle Scholar
  30. 30.
    Yuan Q, Awate S, Misra RDK. Nonisothermal crystallization behavior of polypropylene-clay nanocomposites. Eur Polym J. 2006;42:1994–2003.CrossRefGoogle Scholar
  31. 31.
    Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103–12.CrossRefGoogle Scholar
  32. 32.
    Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRefGoogle Scholar
  33. 33.
    Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer. 1978;19:1142–4.CrossRefGoogle Scholar
  34. 34.
    Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, School of Automotive EngineeringDalian University of TechnologyDalianChina
  2. 2.Department of Polymer Science and Materials, School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations