Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 6, pp 3141–3152 | Cite as

Flame retardant and thermal degradation properties of flame retardant thermoplastic polyurethane based on HGM@[EOOEMIm][BF4]

  • Chuanmei JiaoEmail author
  • Hongzhi Wang
  • Xilei Chen
  • Guowu Tang


This article mainly studies the flame retardant and thermal degradation properties of thermoplastic polyurethane (TPU) composites based on HGM@[EOOEMIm][BF4], prepared by modifying hollow glass microsphere (HGM) with ionic liquid [EOOEMIm][BF4]. The physical and chemical characteristic of HGM@[EOOEMIm][BF4] was tested by X-ray photoelectron spectroscopy and scanning electron microscope–energy-dispersive spectrometer, respectively. And then the flame retardant and thermal degradation characteristics of all TPU composites were tested using smoke density test (SDT), cone calorimeter test (CCT) and thermogravimetric/fourier transform infrared spectroscopy, etc. The SDT results showed that HGM@[EOOEMIm][BF4] can significantly decrease the amount of smoke production. The CCT revealed that HGM@[EOOEMIm][BF4] can greatly enhance the flame retardant of TPU. The peak heat release rate value decreased from 1224.0 kW m−2 (TPU0) to 498.5 kW m−2 (TPU/HB2). The TG test showed that HGM@[EOOEMIm][BF4] can improve the thermal stability of TPU composites and promote the char formation in the combustion process of TPU. All results confirmed that HGM@[EOOEMIm][BF4] can make a great influence on the combustion and degradation of TPU.


Thermal degradation Thermoplastic polyurethane Hollow glass microspheres [EOOEMIm][BF4



The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51776101, No.51206084), the Major Special Projects of Science and Technology from Shandong Province (2015ZDZX11011), the Natural Science Foundation of Shandong Province (ZR2017MB016), and the Project of the State Administration of Work Safety (shandong-0039-2017AQ).


  1. 1.
    Tabuani D, Belluccia F, Camino G. Flame retarded thermoplastic polyurethane (TPU) for cable jacketing application. Polym Degrad Stab. 2012;97:2594–601.CrossRefGoogle Scholar
  2. 2.
    Chen X, Ma C, Jiao C. Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polym Degrad Stab. 2016;129:275–85.CrossRefGoogle Scholar
  3. 3.
    Pinto U, Visconte L, Gallo J, Nunes R. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH). Polym Degrad Stab. 2000;69:257–60.CrossRefGoogle Scholar
  4. 4.
    Li H, Ning N, Zhang L, Wang Y, Liang W, Tian M. Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym Degrad Stab. 2014;105:86–95.CrossRefGoogle Scholar
  5. 5.
    Chen X, Jiang Y, Jiao C. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2015;120:1493–501.CrossRefGoogle Scholar
  6. 6.
    Jiao C, Zhao X, Song W, Chen X. Synergistic flame retardant and smoke suppression effects of ferrous powder with ammonium polyphosphate in thermoplastic polyurethane composites. J Therm Anal Calorim. 2015;120:1173–81.CrossRefGoogle Scholar
  7. 7.
    Liu L, Hu J, Zhuo J, Jiao C, Chen X, Li S. Synergistic flame retardant effects between hollow glass microspheres and magnesium hydroxide in ethylene-vinyl acetate composites. Polym Degrad Stab. 2014;104:87–94.CrossRefGoogle Scholar
  8. 8.
    Geleil A, Hall M, Shelby J. Hollow glass microspheres for use in radiation shielding. J Non-Cryst Solids. 2006;352:620–5.CrossRefGoogle Scholar
  9. 9.
    Hu Y, Mei R, An Z, Zhang J. Silicon rubber/hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos Sci Technol. 2013;79:64–9.CrossRefGoogle Scholar
  10. 10.
    Brow R, Schmitt M. A survey of energy and environmental applications of glass. J Eur Ceram Soc. 2009;29:1193–201.CrossRefGoogle Scholar
  11. 11.
    Verweij H, With G, Veeneman D. Hollow glass microsphere composites: preparation and properties. J Mater Sci. 1985;20:1069–78.CrossRefGoogle Scholar
  12. 12.
    Li B, Yuan J, An Z, Zhang J. Effect of microstructure and physical parameters of hollow glass microsphere on insulation performance. Mater Lett. 2011;65:1992–4.CrossRefGoogle Scholar
  13. 13.
    Liang J. Tensile and impact properties of hollow glass bead-filled PVC composites. Macromol Mater Eng. 2002;287:588–91.CrossRefGoogle Scholar
  14. 14.
    Kim H, Khamis M. Fracture and impact behaviours of hollow micro-sphere/epoxy resin composites. Compos A. 2000;32:1311–7.CrossRefGoogle Scholar
  15. 15.
    Chen X, Jiang Y, Jiao C. Synergistic effects between hollow glass microsphere and ammonium polyphosphate on flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2014;117:857–66.CrossRefGoogle Scholar
  16. 16.
    Jiao C, Wang H, Li S, Chen X. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. J Hazard Mater. 2017;332:176–84.CrossRefGoogle Scholar
  17. 17.
    Yang X, Ge N, Hu L, Gui H, Wang Z, Ding Y. Synthesis of a novel ionic liquid containing phosphorus and its application in intumescent flame retardant polypropylene system. Polym Adv Technol. 2013;24:568–75.CrossRefGoogle Scholar
  18. 18.
    Chen S, Li J, Zhu Y, Guo Z, Su S. Increasing the efficiency of intumescent flame retardant polypropylene catalyzed by polyoxometalate based ionic liquid. J Mater Chem A. 2013;1:15242–6.CrossRefGoogle Scholar
  19. 19.
    He Y, Zhang Q, Zhan X, Cheng D, Chen F. Synthesis of efficient SBA-15 immobilized ionic liquid catalyst and its performance for Friedel–Crafts reaction. Catal Today. 2016;276:112–20.CrossRefGoogle Scholar
  20. 20.
    Ran S, Guo Z, Han L, Fang Z. Effect of Friedel–Crafts reaction on the thermal stability and flammability of high-density polyethylene/brominated polystyrene/graphene nanoplatelet composites. Polym Int. 2014;63:1835–41.CrossRefGoogle Scholar
  21. 21.
    Ge H, Tang G, Hu W, Wang B, Pan Y, Song L, Hu Y. Aluminum hypophosphite microencapsulated to improve its safety and application to flame retardant polyamide 6. J Hazard Mater. 2015;294:186–94.CrossRefGoogle Scholar
  22. 22.
    Chen X, Li M, Zhuo J, Ma C, Jiao C. Influence of Fe2O3 on smoke suppression and thermal degradation properties in intumescent flame-retardant silicone rubber. J Therm Anal Calorim. 2015;123:439–48.CrossRefGoogle Scholar
  23. 23.
    Fang S, Hu Y, Song L. Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci. 2008;43:1057–62.CrossRefGoogle Scholar
  24. 24.
    Jiao C, Zhao L, Chen X. Preparation of modified hollow glass microspheres using Fe2O3 and its flame retardant properties in thermoplastic polyurethane. J Therm Anal Calorim. 2017;12:2101–12.CrossRefGoogle Scholar
  25. 25.
    Pan H, Wang W, Pan Y, Song L, Hu Y, Liew K. Formation of layer-by-layer assembled titanate nanotubes filled coating on flexible polyurethane foam with improved flame retardant and smoke suppression properties. ACS Appl Mater Interfaces. 2015;7:101–11.CrossRefGoogle Scholar
  26. 26.
    Zhou K, Tang G, Jiang S, Gui Z, Hu Y. Combination effect of MoS2 with aluminum hypophosphite in flame retardant ethylene-vinyl acetate composites. RSC Adv. 2016;6:37672–80.CrossRefGoogle Scholar
  27. 27.
    Aslzadeh M, Abdouss M. Preparation and characterization of new flame retardant polyurethane composite and nanocomposite. J Appl Polym Sci. 2013;127:1683–90.CrossRefGoogle Scholar
  28. 28.
    Tang C, Yan H, Li S. Effects of novel polyhedral oligomeric silsesquioxane containing hydroxyl group and epoxy group on the dicyclopentadiene bisphenol dicyanate ester composites. Polym Test. 2007;59:316–27.CrossRefGoogle Scholar
  29. 29.
    Chen X, Jiang Y, Liu J, Jiao C, Qian Y, Li S. Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2015;120:1493–501.CrossRefGoogle Scholar
  30. 30.
    Fang G, Li H, Chen Z, Liu X. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials. J Hazard Mater. 2010;181:1004–9.CrossRefGoogle Scholar
  31. 31.
    Liu Q, Wang S, Zheng Y, Luo Z, Cen K. Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. J Anal Appl Pyrolysis. 2008;82:170–7.CrossRefGoogle Scholar
  32. 32.
    Chen X, Ma C, Jiao C. Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant thermoplastic polyurethane. J Therm Anal Calorim. 2016;126:633–42.CrossRefGoogle Scholar
  33. 33.
    Li B, Lv W, Zhang Q, Wang T, Ma L. Pyrolysis and catalytic pyrolysis of industrial lignins by TG–FTIR: kinetics and products. J Anal Appl Pyrolysis. 2014;108:295–300.CrossRefGoogle Scholar
  34. 34.
    Chen X, Huo L, Jiao C, Li S. TG–FTIR characterization of volatile compounds from flame retardant polyurethane foams materials. J Anal Appl Pyrolysis. 2013;100:186–91.CrossRefGoogle Scholar
  35. 35.
    Xu T, Huang X. A TG–FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process. J Anal Appl Pyrolysis. 2010;87:217–23.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Chuanmei Jiao
    • 1
    Email author
  • Hongzhi Wang
    • 1
  • Xilei Chen
    • 1
  • Guowu Tang
    • 2
  1. 1.College of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China
  2. 2.College of Chemistry, Chemical Engineering and Materials Science, Institute of Molecular and ScienceShandong Normal UniversityJinanPeople’s Republic of China

Personalised recommendations