Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 6, pp 2917–2924 | Cite as

Thermal and gas (CH4 and C2H4) adsorption characteristics of nitric acid-treated clinoptilolite

  • Burcu Erdoğan AlverEmail author


In this study, in order to consider the effect of the time of the nitric acid treatment on thermal, structural and gas adsorption properties, clinoptilolite was modified with 1.0 M acid solutions at 80 °C for 2, 4, 6, 12 and 24 h. Structural and thermal properties of natural and acid-treated clinoptilolites were investigated by powder X-ray diffraction, X-ray fluorescence, thermogravimetric analysis, differential thermal analysis and nitrogen adsorption methods. Methane (CH4) and ethylene (C2H4) are hazardous gases for human and plant health, respectively. Therefore, some measures should be taken to reduce emissions of methane and ethylene. CH4 and C2H4 adsorption capacities of clinoptilolite (CLN) from Turkey and that of acid-treated forms at 273 K up to 100 kPa were found between 0.556–0.683 and 0.470–1.295 mmol g−1, respectively.


Adsorption Clinoptilolite Ethylene Methane XRD TG DTA 



The author would like to acknowledge Dr. Matthias Thommes (Quantachrome Instruments) for his support.


  1. 1.
    Breck DW. Zeolite molecular sieves. New York: Wiley; 1984.Google Scholar
  2. 2.
    Gottardi G, Galli E. Natural zeolites. Berlin: Springer; 1985.CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Ackley MW. Clinoptilolite: untapped potential for kinetic gas separations. Zeolites. 1992;12:780–8.CrossRefGoogle Scholar
  5. 5.
    Rozic M, Cerjan-Stefanovic S, Kurajica S, Rozmari Maeefat M, Margeta K, Farkas A. Decationization and dealumination of clinoptilolite tuff and ammonium exchange on acid-modified tuff. J Colloid Interface Sci. 2005;284:48–56.CrossRefGoogle Scholar
  6. 6.
    Garcia-Basabe Y, Rodriguez-Iznaga I, de Menorval L, Llewellyn P, Maurin G, Lewisf DW, Binionsf R, Autieg MA, Ruiz-Salvadora R. Step-wise dealumination of natural clinoptilolite: structural and physicochemical characterization. Microporous Mesoporous Mater. 2010;135:187–96.CrossRefGoogle Scholar
  7. 7.
    Edwards JS, Durucan S. The origins of methane. Min Sci Technol. 1991;12:193–204.CrossRefGoogle Scholar
  8. 8.
    Carson P, Mumford C. Hazardous chemicals handbook. 2nd ed. Burlington: Butterworth-Heinemann; 2002.Google Scholar
  9. 9.
    Ejiroghene CO, Onokpite E, Onokwai AO. Comparative study of the optimal ratio of biogas production from various organic wastes and weeds for digester/restarted digester. J King Saud Univ Eng Sci. 2016. Scholar
  10. 10.
    Heilig GK. The greenhouse gas methane (CH4): sources and sinks, the impact of population growth, possible interventions. Popul Environ. 1994;16:109–37.CrossRefGoogle Scholar
  11. 11.
    Shindell DT, Faluvegi G, Koch DM, Schmidt GA, Unger N, Bauer SE. Improved attribution of climate forcing to emissions. Science. 2009;326:716–8.CrossRefGoogle Scholar
  12. 12.
    Cavenati S, Grande CA, Rodrigues AE. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J Chem Eng Data. 2004;49:1095–101.CrossRefGoogle Scholar
  13. 13.
    Llano-Restrepo M. Accurate fit and thermochemical analysis of the adsorption isotherms of methane in zeolite 13X. Adsorpt Sci Technol. 2010;28:579–99.CrossRefGoogle Scholar
  14. 14.
    He TB, Li QY, Ju YL. Adsorption and desorption experimental study of carbon dioxide/methane mixture gas on 13X-type molecular sieves. J Chem Eng Jpn. 2013;46:811–20.CrossRefGoogle Scholar
  15. 15.
    Grande CA, Blom R. Cryogenic adsorption of methane and carbon dioxide on zeolites 4A and 13X. Energy Fuels. 2014;28:6688–93.CrossRefGoogle Scholar
  16. 16.
    Mohr RJ, Vorkapic D, Rao MB, Sircar S. Pure and binary gas adsorption equilibria and kinetics of methane and nitrogen on 4A zeolite by isotope exchange technique. Adsorption. 1999;5:145–58.CrossRefGoogle Scholar
  17. 17.
    Ahmed MJ, Theydan SK. Equilibrium isotherms and adsorption heats analysis for ternary mixture of methane, ethane, and propane on 4A zeolite. J Porous Mater. 2014;21:747–55.CrossRefGoogle Scholar
  18. 18.
    Ahmed MJ, Theydan SK. Isotherms and thermodynamics studies for binary adsorption of methane and ethane on 4A molecular sieve zeolite. J Porous Mater. 2014;21:303–10.CrossRefGoogle Scholar
  19. 19.
    Gholipour F, Mofarahi M. Adsorption equilibrium of methane and carbon dioxide on zeolite 13X: experimental and thermodynamic modeling. J Supercrit Fluids. 2016;111:47–54.CrossRefGoogle Scholar
  20. 20.
    Wrzosek-Jakubowska J, Gworek B. Comparison of the physicochemical properties of synthetic 4A and NaY zeolites. Model of methane adsorption on zeolites. Przem Chem. 2016;95:594–8.Google Scholar
  21. 21.
    Zuech JL, Hines AL, Sloan ED. Methane adsorption on 5A molecular-sieve in the pressure range 4 to 690 kPa. Ind Eng Chem Proc Des Dev. 1983;22:172–4.CrossRefGoogle Scholar
  22. 22.
    Balchtyari A, Mofarahi M. Pure and binary adsorption equilibria of methane and nitrogen on zeolite 5A. J Chem Eng Data. 2014;59:626–39.CrossRefGoogle Scholar
  23. 23.
    Nagano J, Eguchi T, Asanuma T, Masui H, Nakayama H, Nakamura NE, Derouane G. 1H and 129Xe NMR investigation of the microporous structure of dealuminated H-mordenite probed by methane and xenon. Microporous Mesoporous Mater. 1999;33:249–56.CrossRefGoogle Scholar
  24. 24.
    Macedonia MD, Moore DD, Maginn EJ, Olken MM. Adsorption studies of methane, ethane, and argon in the zeolite mordenite: molecular simulations and experiments. Langmuir. 2000;16:3823–34.CrossRefGoogle Scholar
  25. 25.
    Delgado JA, Uguina MA, Gomez JM, Ortega L. Adsorption equilibrium of carbon dioxide, methane and nitrogen onto Na and H-mordenite at high pressures. Sep Purif Technol. 2006;48:223–8.CrossRefGoogle Scholar
  26. 26.
    Shang J, Li G, Singh R, Xiao P, Liu JZ, Webley PA. Potassium chabazite: a potential nanocontainer for gas encapsulation. J Phys Chem C. 2010;114:22025–31.CrossRefGoogle Scholar
  27. 27.
    Sakızcı M, Özgül-Tanrıverdi L. Influence of acid and heavy metal cation exchange treatments on methane adsorption properties of mordenite. Turk J Chem. 2015;39:970–83.CrossRefGoogle Scholar
  28. 28.
    Grey TJ, Travis KP, Gale JD, Nicholson D. A comparative simulation study of the adsorption of nitrogen and methane in siliceous heulandite and chabazite. Microporous Mesoporous Mater. 2001;48:203–9.CrossRefGoogle Scholar
  29. 29.
    Sakızcı M, Erdoğan Alver B. Effect of salt modification on thermal behavior, immersion heats and methane adsorption properties of chabazite tuff. J Therm Anal Calorim. 2017;129:441–9.CrossRefGoogle Scholar
  30. 30.
    Ackley MW, Yang RT. Diffusion in ion-exchanged clinoptilolites. AIChE J. 1991;37:1645–56.CrossRefGoogle Scholar
  31. 31.
    Ackley MW, Yang RT. Adsorption characteristics of high-exchange clinoptilolites. Ind Eng Chem Res. 1991;30:2523–30.CrossRefGoogle Scholar
  32. 32.
    Predescu L, Tezel FH, Stelmack P. Adsorption of nitrogen and methane on natural clinoptilolite. In: Bonneviot L, Kaliaguin S, editors. Zeolites: a refined tool for designing catalytic sites. Amsterdam: Elsevier; 1995. p. 507–12.CrossRefGoogle Scholar
  33. 33.
    Aguilar-Armenta G, Hernandez-Ramirez G, Flores-Loyola E, Ugarte-Castaneda A, Silva-Gonzalez R, Tabares-Munoz C, Jimenez-Lopez A, Rodriguez-Castellon E. Adsorption kinetics of CO2, O2, N2, and CH4 in cation-exchanged clinoptilolite. J Phys Chem B. 2001;105:1313–9.CrossRefGoogle Scholar
  34. 34.
    Aguilar-Armenta G, Patino-Iglesias ME, Leyva-Ramos R. Adsorption kinetic behavior of pure CO2, N2 and CH4 in natural clinoptilolite at different temperatures. Adsorpt Sci Technol. 2003;21:81–91.CrossRefGoogle Scholar
  35. 35.
    Jayaraman A, Hernandez-Maldonado AJ, Yang RT, Chinn D, Munson CL, Mohr DH. Clinoptilolites for nitrogen/methane separation. Chem Eng Sci. 2004;59:2407–17.CrossRefGoogle Scholar
  36. 36.
    Erdoğan-Alver B, Sakızcı M. Influence of acid treatment on structure of clinoptilolite tuff and its adsorption of methane. Adsorption. 2015;21:391–9.CrossRefGoogle Scholar
  37. 37.
    Kennedy DA, Tezel FH. Cation exchange modification of clinoptilolite-screening analysis for potential equilibrium and kinetic adsorption separations involving methane, nitrogen, and carbon dioxide. Microporous Mesoporous Mater. 2018;262:235–50.CrossRefGoogle Scholar
  38. 38.
    Abeles FB, Morgan PW, Saltveit ME. Ethylene in Plant biology. 2nd ed. San Diego: Academic Press; 1992.Google Scholar
  39. 39.
    Salveit ME. Effect of ethylene on quality of fresh fruits and vegetables. Postharvest Biol Technol. 1999;15:279–92.CrossRefGoogle Scholar
  40. 40.
    Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol. 1984;35:155–89.CrossRefGoogle Scholar
  41. 41.
    Vermeiren L, Devlieghere F, van Beest M, de Kruijf N, Debevere J. Developments in the active packaging of foods. Trends Food Sci Technol. 1999;10:77–86.CrossRefGoogle Scholar
  42. 42.
    Hyun SH, Danner RP. Equilibrium adsorption of ethane, ethylene, isobutene, carbon dioxide and their binary mixtures on 13X molecular sieves. J Chem Eng Data. 1982;27:196–200.CrossRefGoogle Scholar
  43. 43.
    Costa E, Callela G, Jimenez A, Pau J. Adsorption equilibrium of ethylene, propane, propylene, carbon dioxide and their mixtures on 13X zeolite. J Chem Eng Data. 1991;36:218–24.CrossRefGoogle Scholar
  44. 44.
    Calleja G, Dominguez PL, Perez P. Multicomponent adsorption equilibrium of ethylene, propane, propylene and CO2 on 13X zeolite. Gas Sep Purif. 1994;8:247–56.CrossRefGoogle Scholar
  45. 45.
    Triebe RW, Tezel FH, Knulbe KC. Adsorption of methane, ethane and ethylene on molecular sieve zeolites. Gas Sep Purif. 1996;10:81–4.CrossRefGoogle Scholar
  46. 46.
    Berlier K, Olivier MG, Jadot R. Adsorption of methane, ethane and ethylene on zeolite. J Chem Eng Data. 1995;40:1206–8.CrossRefGoogle Scholar
  47. 47.
    Limtrakul J, Nanok T, Jungsuttiwong S, Khongpracha P, Truong TN. Adsorption of unsaturated hydrocarbons on zeolites: the effects of the zeolite framework on adsorption properties of ethylene. Chem Phys Lett. 2001;349:161–6.CrossRefGoogle Scholar
  48. 48.
    Ketrat S, Limtrakul J. Theoretical study of the adsorption of ethylene on alkali-exchanged zeolites. Int J Quantum Chem. 2003;94:333–40.CrossRefGoogle Scholar
  49. 49.
    Al-Baghli NA, Loughlin KF. Binary and ternary adsorption of methane, ethane, and ethylene on titanosilicate ETS-10 zeolite. J Chem Eng Data. 2006;51:248–54.CrossRefGoogle Scholar
  50. 50.
    Patdhanagul N, Srithanratana T, Rangsriwatananon K, Hengrasmee S. Ethylene adsorption on cationic surfactant modified zeolite NaY. Microporous Mesoporous Mater. 2010;131:97–102.CrossRefGoogle Scholar
  51. 51.
    Patdhanagul N, Rangsriwatananon K, Siriwong K, Hengrasmee S. Combined modification of zeolite NaY by phenyl trimethyl ammonium bromide and potassium for ethylene gas adsorption. Microporous Mesoporous Mater. 2012;153:30–4.CrossRefGoogle Scholar
  52. 52.
    Sue-aok N, Srithanratana T, Rangsriwatananon K, Hengrasmee S. Study of ethylene adsorption on zeolite NaY modified with group I metal ions. Appl Surf Sci. 2010;256:3997–4002.CrossRefGoogle Scholar
  53. 53.
    Li J, Qiu J, Sun Y, Long Y. Study of ethylene adsorption on zeolite NaY modified with group I metal ions. Microporous Mesoporous Mater. 2000;37:365–78.CrossRefGoogle Scholar
  54. 54.
    Defu L, Jinqu W. The adsorption separation of ethylene oxygen and carbon dioxide gases on molecular sieves. Adsorpt Sci Technol. 2002;20:83–90.CrossRefGoogle Scholar
  55. 55.
    Subbotina IR, Kazanskii VB. IR spectroscopic study of ethylene adsorption and oligomerization on the hydrogen form of mordenite. Kinet Catal. 2002;43:125–31.Google Scholar
  56. 56.
    Vargas-Hernandez D, Perez-Cruz MA, Hernandez-Huesca R. Selective adsorption of ethylene over ethane on natural mordenite and on K+-exchanged mordenite. Adsorption. 2015;21:153–63.CrossRefGoogle Scholar
  57. 57.
    Kim SI, Aida T, Niiyama H. Binary adsorption of very low concentration ethylene and water vapor on mordenites and desorption by microwave heating. Sep Purif Technol. 2005;45:174–82.CrossRefGoogle Scholar
  58. 58.
    Erdoğan Alver B, Esenli F. Acid treated mordenites as adsorbents of C2H4 and H2 gases. Microporous Mesoporous Mater. 2017;244:67–73.CrossRefGoogle Scholar
  59. 59.
    Erdoğan B, Sakızcı M, Yörükoğulları E. Characterization and ethylene adsorption of natural and modified clinoptilolites. Appl Surf Sci. 2008;254:2450–7.CrossRefGoogle Scholar
  60. 60.
    Aguilar-Armenta G, Romero-Perez A. Adsorption of C2H4, C2H6 and CO2 on cation-exchanged clinoptilolite. Adsorpt Sci Technol. 2009;27:523–36.CrossRefGoogle Scholar
  61. 61.
    Uzunova EL, Mikosch H. Adsorption and activation of ethene in transition metal exchanged zeolite clinoptilolite: a density functional study. ACS Catal. 2013;3:2759–67.CrossRefGoogle Scholar
  62. 62.
    Erdoğan Alver B. A comparative adsorption study of C2H4 and SO2 on clinoptilolite-rich tuff: effect of acid treatment. J Hazard Mater. 2013;262:627–33.CrossRefGoogle Scholar
  63. 63.
    Moore DM, Reynolds RC Jr. X-ray diffraction and the identification and analysis of clay minerals. 2nd ed. New York: Oxford University Press; 1997.Google Scholar
  64. 64.
    Amereh M, Haghighi M, Estifaee P. The potential use of HNO3-treated clinoptilolite in the preparation of Pt/CeO2-clinoptilolite nanostructured catalyst used in toluene abatement from waste gas stream at low temperature. Arab J Chem. 2018;11:81–90.CrossRefGoogle Scholar
  65. 65.
    Rakitskaya TL, Kiose TA, Golubchik KO, Ennan AA, Volkova VY. Acid-modified clinoptilolite as a support for palladium-copper complexes catalyzing carbon monoxide oxidation with air oxygen. Chem Cent. 2017;11:1–10.CrossRefGoogle Scholar
  66. 66.
    Lowell S, Shields JE, Thomas MA, Thommes M. Characterization of porous solids and powders: surface area, pore size and density. Netherlands: Springer; 2004.CrossRefGoogle Scholar
  67. 67.
    Korkuna O, Leboda R, LebodaSkubiszewska-Zie J. Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous Mesoporous Mater. 2006;87(3):243–54.CrossRefGoogle Scholar
  68. 68.
    Mumpton FA. Clinoptilolite redefined. Am Mineral. 1960;45:351–69.Google Scholar
  69. 69.
    Talu O. An overview of adsorptive storage of natural gas. In: Suzuki M, editor. Fundamentals of adsorption. Studies in surface science and catalysis. Amsterdam: Elsevier; 1993. p. 655.Google Scholar
  70. 70.
    Kouvelosa E, Kesoreb K, Steriotisa T, Grigoropoulouc H, Bouloubasid D, Theophiloud N, Tzintzosd S, Kanelopoulosa N. High pressure N2/CH4 adsorption measurements in clinoptilolites. Microporous Mesoporous Mater. 2007;99:106–11.CrossRefGoogle Scholar
  71. 71.
    Arcoya A, Gonzalez JA, Llabre G, Seoane XL, Travieso N. Role of the countercations on the molecular sieve properties of a clinoptilolite. Microporous Mater. 1996;7:1–13.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceEskisehir Technical UniversityEskisehirTurkey

Personalised recommendations