Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1521–1530 | Cite as

Thermal, morphological, spectroscopic and biological study of chitosan, hydroxyapatite and wollastonite biocomposites

  • Josué da Silva BuritiEmail author
  • Maria Eduarda Vasconcelos Barreto
  • Kleilton Oliveira Santos
  • Marcus Vinicius Lia Fook


The objective of this work was to investigate the thermal, morphological, spectroscopic and cytotoxicity of hydroxyapatite–wollastonite powders obtained via sol–gel synthesis and of biocomposites chitosan–hydroxyapatite–wollastonite. A mixture of wollastonite, calcium nitrate tetrahydrate and ammonium dihydrogen phosphate with a ratio of 1:2:1.2 or 2:2:1.2, respectively, was produced following drying and heat treatment where the final composite was macerated. These powders were added to a chitosan solution where it was further dried and neutralized. The ceramic loads were used in various ratios. The materials were characterized by TG, DSC, DRX, MEV, FTIR and cytotoxicity. Based on the studied properties, it can be said that the sol–gel process proved to be effective in obtaining hydroxyapatite–wollastonite powders. By TG, it was verified that the thermal stability of the powders increased when a greater percentage of wollastonite was used. For biocomposites with higher percentages of load, there was increase in thermal stability, probably attributed to the higher compaction of the biocomposites when compared to the pure. By DSC, there was a tendency of displacement of the endothermic and exothermic peaks, suggesting that the biocomposite with higher load has greater capacity of retention and interaction stronger with molecules of water, but also has greater thermal stability. The samples present biomaterial potential with prospects of endodontic use, which showed cell viability in L929 fibroblast cell culture above 70.00%.


Biocomposites Chitosan Hydroxyapatite Wollastonite Sol–gel Endodontics 



The National Postdoctoral Program of the Coordination of Improvement of Higher Education Personnel (PNPD), the Coordination of Improvement of Higher Education Personnel (CAPES), the Laboratory of Evaluation and Development of Biomaterials of the Northeast (CERTBIO) and the Federal University of Campina Grande (UFCG).


  1. 1.
    Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater Sci Eng C Mater Biol Appl. 2017;71:1175–91.CrossRefGoogle Scholar
  2. 2.
    Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han C-M, Mahapatra C, et al. Sol–gel based materials for biomedical applications. Prog Mater Sci. 2016;77:1–79.CrossRefGoogle Scholar
  3. 3.
    Pires ALR, Bierhalz ACK, Moraes ÂM. Biomaterials: types, applications, and market. Quim Nova. 2015;38:957–71.Google Scholar
  4. 4.
    Ai M, Du Z, Zhu S, Geng H, Zhang X, Cai Q, et al. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent Mater. 2017;33(1):12–22.CrossRefGoogle Scholar
  5. 5.
    Mishra AK. Sol–gel based nanoceramic materials: preparation, properties and applications. Johannesburg: Springer; 2017.CrossRefGoogle Scholar
  6. 6.
    Sidane D, Rammal H, Beljebbar A, Gangloff SC, Chicot D, Velard F, et al. Biocompatibility of sol–gel hydroxypatite-titania composite and bilayer coatings. Mater Sci Eng C. 2017;72:650–8.CrossRefGoogle Scholar
  7. 7.
    Buriti JS, Morais CRS, Santos LNRM, Oliveira FC, Buriti BMAB, Queiroz AJP, et al. Thermal, structural and spectroscopic properties of silico-aluminous vitreous monoliths doped with neodymium and erbium via sol–gel process. J Therm Anal Calorim. 2017;131:725–33.CrossRefGoogle Scholar
  8. 8.
    Domínguez-Trujillo C, Peón E, Chicardi E, Pérez H, Rodríguez-Ortiz JA, Pavón JJ, et al. Sol–gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surf Coat Technol. 2018;333:158–62.CrossRefGoogle Scholar
  9. 9.
    Fihri A, Len C, Varma RS, Solhy A. Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord Chem Rev. 2017;347:48–76.CrossRefGoogle Scholar
  10. 10.
    Kalaycioglu Z, Torlak E, Akin-Evingur G, Ozen I, Erim FB. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int J Biol Macromol. 2017;101:882–8.CrossRefGoogle Scholar
  11. 11.
    Kaviyarasu K, Mariappan A, Neyvasagam K, Ayeshamariam A, Pandi P, Palanichamy RR, et al. Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol–gel method. Surf Interfaces. 2016;6:247–55.CrossRefGoogle Scholar
  12. 12.
    Kuriakose TA, Kalkura SN, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, et al. Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. J Cryst Growth. 2004;263(1):517–23.CrossRefGoogle Scholar
  13. 13.
    Theodorou GS, Kontonasaki E, Theocharidou A, Bakopoulou A, Bousnaki M, Hadjichristou C, et al. Sol–gel derived Mg-based ceramic scaffolds doped with zinc or copper ions: preliminary results on their synthesis, characterization, and biocompatibility. Int J Biomater. 2016;2016:3858301.CrossRefGoogle Scholar
  14. 14.
    Borowska MZ, Chełminiak D, Kaczmarek H, Kaczmarek-Kędziera A. Effect of side substituents on thermal stability of the modified chitosan and its nanocomposites with magnetite. J Therm Anal Calorim. 2016;124(3):1267–80.CrossRefGoogle Scholar
  15. 15.
    Olaru AM, Marin L, Morariu S, Pricope G, Pinteala M, Tartau-Mititelu L. Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohyd Polym. 2018;179:59–70.CrossRefGoogle Scholar
  16. 16.
    Grząbka-Zasadzińska A, Amietszajew T, Borysiak S. Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids. J Therm Anal Calorim. 2017;130(1):143–54.CrossRefGoogle Scholar
  17. 17.
    Golie WM, Upadhyayula S. An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. Int J Biol Macromol. 2017;97:489–502.CrossRefGoogle Scholar
  18. 18.
    Budnyak TM, Yanovska ES, Kołodyńska D, Sternik D, Pylypchuk IV, Ischenko MV, et al. Preparation and properties of organomineral adsorbent obtained by sol–gel technology. J Therm Anal Calorim. 2016;125(3):1335–51.CrossRefGoogle Scholar
  19. 19.
    Zaldivar MP, Santilli CV, Covas CAP, Pulcinelli SH. Thermal properties, nanoscopic structure and swelling behavior of chitosan/(ureasil–polyethylene oxide hybrid) blends. J Therm Anal Calorim. 2017;130(2):791–8.CrossRefGoogle Scholar
  20. 20.
    Psak H, Saurabh CK, Adnan AS, Nurul Fazita MR, Syakir MI, Davoudpour Y, et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohyd Polym. 2016;150:216–26.CrossRefGoogle Scholar
  21. 21.
    Shaari N, Kamarudin SK. Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources. 2015;289:71–80.CrossRefGoogle Scholar
  22. 22.
    Aguiar AE, de Silva LG, de Paula Barbosa HF, Glória RF, Espanhol-Soares M, Gimenes R. Synthesis of Al2O3–0.5B2O3–SiO2 fillers by sol–gel method for dental resin composites. J Non-Cryst Solids. 2017;458:86–96.CrossRefGoogle Scholar
  23. 23.
    Bottino MC, Pankajakshan D, Nör JE. Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin. 2017;61(4):689–711.CrossRefGoogle Scholar
  24. 24.
    Costa JBZ, Silva F, Dultra CA, Souza LF, Santos MCNE. O uso de membranas biológicas para regeneração óssea guiada em implantodontia. Revista Bahiana de Odontologia. 2016;7(1):14–21.Google Scholar
  25. 25.
    E’Gues MAM, Paula M, Goissis G. Collagen composite with silicate and hydroxyapatite as endodontic material: preparation and characterization. Revista Odonto Ciência. 2008;23(2):134–40.Google Scholar
  26. 26.
    Encinas-Romero MA, Peralta-Haley J, Valenzuela-García JL, Castillón-Barraza FF. Synthesis and structural characterization of hydroxyapatite-wollastonite biocomposites, produced by an alternative sol-gel route. J Biomater Nanobiotechnol. 2013;04(04):327–33.CrossRefGoogle Scholar
  27. 27.
    Goudouri OM, Vogel C, Grunewald A, Detsch R, Kontonasaki E, Boccaccini AR. Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. J Biomater Appl. 2016;30(6):740–9.CrossRefGoogle Scholar
  28. 28.
    Pankajakshan D, Albuquerque M, Bottino M. Electrospun nanofibers for regenerative dentistry. In: Uyar T, Kny E, editors. Electrospun materials for tissue engineering and biomedical applications. Amsterdam: Elsevier; 2017. p. 357–84.CrossRefGoogle Scholar
  29. 29.
    Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod. 2016;42(10):1417–26.CrossRefGoogle Scholar
  30. 30.
    Encinas-Romero MA, Aguayo-Salinas S, Castillo SJ, Castilln-Barraza FF, Castao VM. Synthesis and characterization of hydroxyapatitewollastonite composite powders by sol–gel processing. Int J Appl Ceram Technol. 2008;5(4):401–11.CrossRefGoogle Scholar
  31. 31.
    Harabi A, Chehlatt S. Preparation process of a highly resistant wollastonite bioceramics using local raw materials. J Therm Anal Calorim. 2012;111(1):203–11.CrossRefGoogle Scholar
  32. 32.
    Neamtu J, Bubulica MV, Rotaru A, Ducu C, Balosache OE, Manda VC, et al. Hydroxyapatite–alendronate composite systems for biocompatible materials. J Therm Anal Calorim. 2016;127(2):1567–82.CrossRefGoogle Scholar
  33. 33.
    Shavandi A, Bekhit Ael D, Ali MA, Sun Z, Gould M. Development and characterization of hydroxyapatite/beta-TCP/chitosan composites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;56:481–93.CrossRefGoogle Scholar
  34. 34.
    Sivaperumal VR, Mani R, Nachiappan MS, Arumugam K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Mater Charact. 2017;134:416–21.CrossRefGoogle Scholar
  35. 35.
    Szczes A, Holysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Coll Interface Sci. 2017;249:321–30.CrossRefGoogle Scholar
  36. 36.
    Tõnsuaadu K, Gross KA, Plūduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2011;110(2):647–59.CrossRefGoogle Scholar
  37. 37.
    Antonino RSCMQ, Lia Fook BRP, Lima VAO, Rached RÍF, Lima EPN, Lima RJS, et al. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs. 2017;15(5):141.CrossRefGoogle Scholar
  38. 38.
    ISO (2009) Biological evaluation of medical devices- Part 5: Teste for in vitro cytotoxicity.Google Scholar
  39. 39.
    Skwarek E. Thermal analysis of hydroxyapatite with adsorbed oxalic acid. J Therm Anal Calorim. 2015;122(1):33–45.CrossRefGoogle Scholar
  40. 40.
    Gonzalez G, Costa-Vera C, Borrero LJ, Soto D, Lozada L, Chango JI, et al. Effect of carbonates on hydroxyapatite self-activated photoluminescence response. J Lumin. 2017. Scholar
  41. 41.
    Budnyak TM, Yanovska ES, Kichkiruk OY, Sternik D, Tertykh VA. Natural minerals coated by biopolymer chitosan: synthesis, physicochemical, and adsorption properties. Nanoscale Res Lett. 2016;11(1):492. Scholar
  42. 42.
    Blachnio M, Budnyak TM, Derylo-Marczewska A, Marczewski AW, Tertykh VA. Chitosan-silica hybrid composites for removal of sulfonated azo dyes from aqueous solutions. Langmuir. 2018;34(6):2258–73. Scholar
  43. 43.
    Liu T, Dan W, Dan N, Liu X, Liu X, Peng X. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications. Mater Sci Eng C Mater Biol Appl. 2017;77:202–11.CrossRefGoogle Scholar
  44. 44.
    Rong SY, Mubarak NM, Tanjung FA. Structure-property relationship of cellulose nanowhiskers reinforced chitosan biocomposite films. J Environ Chem Eng. 2017;5(6):6132–6.CrossRefGoogle Scholar
  45. 45.
    Sánchez R, Alonso G, Valencia C, Franco JM. Rheological and TGA study of acylated chitosan gel-like dispersions in castor oil: influence of acyl substituent and acylation protocol. Chem Eng Res Des. 2015;100:170–8.CrossRefGoogle Scholar
  46. 46.
    Akyuz L, Kaya M, Koc B, Mujtaba M, Ilk S, Labidi J, et al. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties. Int J Biol Macromol. 2017;105(Pt 2):1401–11.CrossRefGoogle Scholar
  47. 47.
    Modrzejewska Z, Nawrotek K, Zarzycki R, Douglas T. Structural characteristics of thermosensitive chitosan glutaminate hydrogels. Progress Chem Appl Chitin Deriv. 2013;18:93–106.Google Scholar
  48. 48.
    Podust T, Kulik T, Palyanytsya B, Gun’ko V, Tóth A, Mikhalovska L, et al. Chitosan-nanosilica hybrid materials: preparation and properties. Appl Surf Sci. 2014;320:563–9.CrossRefGoogle Scholar
  49. 49.
    Saldias C, Diaz DD, Bonardd S, Soto-Marfull C, Cordoba A, Saldias S, et al. In situ preparation of film and hydrogel bio-nanocomposites of chitosan/fluorescein-copper with catalytic activity. Carbohyd Polym. 2018;180:200–8.CrossRefGoogle Scholar
  50. 50.
    Guinesi LS, Cavalheiro ÉTG. The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta. 2006;444(2):128–33.CrossRefGoogle Scholar
  51. 51.
    Corazzari I, Nisticò R, Turci F, Faga MG, Franzoso F, Tabasso S, et al. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: thermal degradation and water adsorption capacity. Polym Degrad Stab. 2015;112:1–9.CrossRefGoogle Scholar
  52. 52.
    Geetha V, Gomathi T, Sudha PN. Preparation and characterization of Graphene-grafted-chitosan/hydroxyapatite composite. J Chem Pharm Res. 2015;7(5):871–6.Google Scholar
  53. 53.
    Lino MES, Ruela ALM, Trevisan MG, Pereira GR. Influence of hydration and crosslinking in transdermal delivery of nicotine from chitosan-based gels by thermal analysis. J Therm Anal Calorim. 2017;130(3):1455–61.CrossRefGoogle Scholar
  54. 54.
    Topcu C, Caglar B, Onder A, Coldur F, Caglar S, Guner EK, et al. Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor. Mater Res Bull. 2018;98:288–99.CrossRefGoogle Scholar
  55. 55.
    Mishra R, Soni K, Mehta T. Mucoadhesive vaginal film of fluconazole using cross-linked chitosan and pectin. J Therm Anal Calorim. 2017;130(3):1683–95.CrossRefGoogle Scholar
  56. 56.
    Mosselmans G, Biesemans M, Willem R, Wastiels J, Leermakers M, Rahier H, et al. Thermal hardening and structure of a phosphorus containing cementitious model material: phosphoric acid-wollastonite. J Therm Anal Calorim. 2007;88(3):723–9.CrossRefGoogle Scholar
  57. 57.
    Anjaneyulu U, Sasikumar S. Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source. Bull Mater Sci. 2014;37(2):207–12.CrossRefGoogle Scholar
  58. 58.
    Dambrauskas T, Baltakys K, Eisinas A. Formation and thermal stability of calcium silicate hydrate substituted with Al3+ ions in the mixtures with CaO/SiO2 = 1.5. J Therm Anal Calorim. 2017;131:501–12.CrossRefGoogle Scholar
  59. 59.
    Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnol. 2015;13:40.CrossRefGoogle Scholar
  60. 60.
    João C, Almeida R, Silva J, Borges J. A simple sol–gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineering. Mater Lett. 2016;185:407–10.CrossRefGoogle Scholar
  61. 61.
    Morsy R, Ali SS, El-Shetehy M. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria. J Mol Struct. 2017;1143:251–8.CrossRefGoogle Scholar
  62. 62.
    Nazeer MA, Yilgör E, Yilgör I. Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications. Carbohyd Polym. 2017;175:38–46.CrossRefGoogle Scholar
  63. 63.
    Colorado H, Pleitt J, Hiel C, Yang J, Hahn H, Castano CH. Wollastonite based-chemically bonded phosphate ceramics with lead oxide contents under gamma irradiation. J Nucl Mater. 2012;425(1):197–204.CrossRefGoogle Scholar
  64. 64.
    Fraga AF, Filho EdA, Rigo ECdS, Boschi AO. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes. Appl Surf Sci. 2011;257(9):3888–92.CrossRefGoogle Scholar
  65. 65.
    Lima HA, Lia FMV, Ramdayal S. Preparation and characterization of chitosan-insulin-tripolyphosphate membrane for controlled drug release: effect of cross linking agent. J Biomater Nanobiotechnol. 2014;05(04):211–9.CrossRefGoogle Scholar
  66. 66.
    Dang Q, Liu K, Liu C, Xu T, Yan J, Yan F, et al. Preparation, characterization, and evaluation of 3,6-O-N-acetylethylenediamine modified chitosan as potential antimicrobial wound dressing material. Carbohyd Polym. 2018;180:1–12.CrossRefGoogle Scholar
  67. 67.
    Shakir M, Jolly R, Khan MS, Rauf A, Kazmi S. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering. Int J Biol Macromol. 2016;93(Part A):276–89.CrossRefGoogle Scholar
  68. 68.
    Dumont VC, Mansur HS, Mansur AA, Carvalho SM, Capanema NS, Barrioni BR. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. Int J Biol Macromol. 2016;93:1465–78.CrossRefGoogle Scholar
  69. 69.
    Iqbal H, Ali M, Zeeshan R, Mutahir Z, Iqbal F, Nawaz MAH, et al. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids Surf B. 2017;160:553–63.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Josué da Silva Buriti
    • 1
    Email author
  • Maria Eduarda Vasconcelos Barreto
    • 1
  • Kleilton Oliveira Santos
    • 2
  • Marcus Vinicius Lia Fook
    • 1
  1. 1.Unidade Acadêmica de Engenharia de MateriaisUniversidade Federal de Campina GrandeCampina GrandeBrazil
  2. 2.Programa de Pós-Graduação em QuímicaUniversidade Estadual do ParaíbaCampina GrandeBrazil

Personalised recommendations