Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1545–1556 | Cite as

Synthesis and isoconversional kinetic study of the formation of LiNiPO4 from Ni3(PO4)2·8H2O as a new precursor

  • Anucha Suekkhayad
  • Pittayagorn NoisongEmail author
  • Chanaiporn Danvirutai


The nanosized LiNiPO4 was successfully synthesized by a solid-state reaction between the new Ni3(PO4)2·8H2O precursor and Li3PO4 at 700 °C in air atmosphere. The formation of LiNiPO4 was generated via three thermal decomposition steps. The samples were characterized by Fourier transform infrared, X-ray diffraction, scanning electron microscopy, atomic absorption/atomic emission spectrophotometers, and thermogravimetric/differential thermal gravimetric/differential thermal analysis techniques. The activation energy (Eα) values of the three steps were calculated by Vyazovkin method and determined to be 90.39 ± 5.79, 197.81 ± 7.46, and 308.66 ± 12.03 kJ mol−1, respectively. The average Eα values from this method are very close to Eα from KAS method. The most probable mechanism functions g(α) of three steps were evaluated by using the masterplots method and found to be the F1/3 (first step), F3/2 (second step), and D4 (final step), respectively. The pre-exponential factors (A) values of three steps were obtained based on the Eα and g(α). The kinetic triplet parameters of the formation of LiNiPO4 from the new precursor are reported in the first time.


Isoconversional kinetics Ni3(PO4)2·8H2O precursor Non-isothermal decomposition Solid-state reaction 



The financial support from the Material Chemistry Research Center, Department of Chemistry, Faculty of Science and Center of Excellence for Innovation Chemistry, Faculty of Science, Khon Kaen University are gratefully acknowledged.

Supplementary material

10973_2018_7469_MOESM1_ESM.docx (16.1 mb)
Supplementary material 1 (DOCX 16450 kb)


  1. 1.
    Xie Y, Yu H, Yi T, Zhu Y. Understanding the thermal and mechanical stabilities of olivine-type LiMPO4 (M = Fe, Mn) as cathode materials for rechargeable lithium batteries from first principles. ACS Appl Mater Interfaces. 2014;6:4033–42.CrossRefGoogle Scholar
  2. 2.
    Zaghib K, Mauger A, Groult H, Goodenough J, Julien C. Advanced electrodes for high power li–ion batteries. Materials. 2013;6:1028–49.CrossRefGoogle Scholar
  3. 3.
    Zhang W, Shan Z, Zhu K, Liu S, Liu X, Tian J. LiMnPO4 nanoplates grown via a facile surfactant-mediated solvothermal reaction for high-performance li–ion batteries. Electrochim Acta. 2015;153:385–92.CrossRefGoogle Scholar
  4. 4.
    Qian L, Xia Y, Zhang W, Huang H, Gan Y, Zeng H, Tao X. Electrochemical synthesis of mesoporous FePO4 nanoparticles for fabricating high performance LiFePO4/C cathode materials. Ind Eng Chem Res. 2013;52:1870–6.CrossRefGoogle Scholar
  5. 5.
    Bramnik N, Ehrenberg H. Precursor-based synthesis and electrochemical performance of LiMnPO4. J Alloys Compd. 2008;464:259–64.CrossRefGoogle Scholar
  6. 6.
    Zhu Y, Tang S, Shi H, Hu H. Synthesis of FePO4·xH2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method. Ceram Int. 2014;40:2685–90.CrossRefGoogle Scholar
  7. 7.
    Kim J, Choi JW, Chauhan GS, Ahn J, Hwang G, Choi J, Ahn H. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol–gel synthesis. Electrochim Acta. 2015;153:385–92.CrossRefGoogle Scholar
  8. 8.
    Lecce D, Hu T, Hassoun J. Electrochemical features of LiMnPO4 olivine prepared by sol-gel path way. J Alloys Compd. 2017;635:730–7.CrossRefGoogle Scholar
  9. 9.
    Gu Y, Wang H, Zhu Y, Wang L, Qian Y, Chu Y. Hydrothermal synthesis of 3D-hierarchical hemoglobin-like LiMnPO4 microspheres as cathode materials for lithium ion batteries. Solid State Ionics. 2015;274:106–10.CrossRefGoogle Scholar
  10. 10.
    Pan LX, Xu C, Hong D, Fang H, Zhen L. Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode. Electrochim Acta. 2013;87:303–8.CrossRefGoogle Scholar
  11. 11.
    Zhang J, Luo S, Wang Q, Wang Z, Hao A, Zhang Y, Liu Y, Xu Q, Zhai Y. Optimized hydrothermal synthesis and electrochemical performance of LiMnPO4/C cathode materials using high specific area spherical structure Li3PO4. J Alloys Compd. 2017;701:433–8.CrossRefGoogle Scholar
  12. 12.
    Sronsri C, Noisong P, Danvirutai C. Synthesis, characterization and vibrational spectroscopic study of Co, Mg co-doped LiMnPO4. Spectrochim Acta A. 2016;153:436–44.CrossRefGoogle Scholar
  13. 13.
    Cheng G, Zuo P, Wang L, Shi W, Ma Y, Du C, Cheng X, Gao Y, Yin G. High-performance carbon-coated LiMnPO4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery. J Solid State Electrochem. 2015;19:281–8.CrossRefGoogle Scholar
  14. 14.
    Wang L, Sun W, Li J, Gao J, He X, Jiang C. Synthesis of electrochemically active LiMnPO4 via MnPO4·H2O with different morphology prepared by facile precipitation. Int J Electrochem Sci. 2012;7:3591–600.Google Scholar
  15. 15.
    Liu X, Tang J, Qin X, Deng Y, Chen G. Supercritical-hydrothermal accelerated solid state reaction route for synthesis of LiMn2O4 cathode material for high-power Li-ion batteries. Trans Nonferrous Met Soc China. 2014;24:1414–24.CrossRefGoogle Scholar
  16. 16.
    Lihua H, Xuheng L, Zhongwei Z. Non-isothermal kinetics study on synthesis of LiFePO4 via carbothermal reduction method. Thermochim Acta. 2013;566:298–304.CrossRefGoogle Scholar
  17. 17.
    Khachani M, Hamidi EA, Kacimi M, Halim M, Arsalane S. Kinetic approach of multi-step thermal decomposition processes of iron (III) phosphate dihydrate FePO4·2H2O. Thermochim Acta. 2015;610:29–36.CrossRefGoogle Scholar
  18. 18.
    Noisong P, Danvirutai C, Srithanratana T, Boonchom B. Synthesis, characterization and non-isothermal decomposition kinetics of manganese hypophosphite monohydrate. Solid State Sci. 2008;10:1598–604.CrossRefGoogle Scholar
  19. 19.
    Suekkhayad A, Noisong P, Danvirutai C. Synthesis, thermodynamic and kinetic studies of the formation of LiMnPO4 from a new Mn(H2PO2)2·H2O precursor. J Therm Anal Calorim. 2017;129:123–34.CrossRefGoogle Scholar
  20. 20.
    Kullyakool S, Danvirutai C, Siriwong K, Noisong P. Studies of thermal decomposition kinetics and temperature dependence of thermodynamic functions of the new precursor LiNiPO4·3H2O for the synthesis of olivine LiNiPO4. J Therm Anal Calorim. 2015;122:665–77.CrossRefGoogle Scholar
  21. 21.
    Vyazovkin S, Burnham A, Criado J, Perez-Maqueda L, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  22. 22.
    Kissinger H. Reaction kinetics in differential thermal analysis. J Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  23. 23.
    Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.Google Scholar
  24. 24.
    Ozawa T. A new method of analyzing thermogravimetric data. Res Rep Chiba Inst Technol. 1965;38:1881–6.Google Scholar
  25. 25.
    Flynn J, Wall L. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.CrossRefGoogle Scholar
  26. 26.
    Long Q, Xia Y, Liao S, Lia Y, Wu W, Huang Y. Facile synthesis of hydrotalcite and its thermal decomposition kinetics mechanism study with masterplots method. Thermochim Acta. 2014;579:50–5.CrossRefGoogle Scholar
  27. 27.
    Kullyakool S, Danvirutai C, Siriwong K, Noisong P. Determination of kinetic triplet of the synthesized Ni3(PO4)2·8H2O by non-isothermal and isothermal kinetic methods. J Therm Anal Calorim. 2014;115:1497–507.CrossRefGoogle Scholar
  28. 28.
    Zhang QS, Xie S, Chen HC. Fabrication and electrical properties of Li3PO4-based composite electrolyte films. Mater Sci Eng B. 2005;121:160–5.CrossRefGoogle Scholar
  29. 29.
    Jacob R, Nair GH, Isac J. Structural and morphological studies of nanocrystalline ceramic BaSr0.9Fe0.1TiO4. Int Lett Chem Phys Astron. 2014;41:100–17.CrossRefGoogle Scholar
  30. 30.
    Khawam A, Flanagan D. Solid-state kinetic models: basics and mathematical fundamentals. J Phys Chem. 2006;110:17315–28.CrossRefGoogle Scholar
  31. 31.
    Sronsri C, Noisong P, Danvirutai C. Thermal decomposition kinetics of Mn0.9Co0.1HPO4·3H2O using experimental-model comparative and thermodynamic studies. J Therm Anal Calorim. 2017;127:1983–94.CrossRefGoogle Scholar
  32. 32.
    Kullyakool S, Siriwong K, Noisong P, Danvirutai C. Kinetic triplet evaluation of a complicated dehydration of Co3(PO4)2·8H2O using the deconvolution and the simplified master plots combined with nonlinear regression. J Therm Anal Calorim. 2017;128:807–17.CrossRefGoogle Scholar
  33. 33.
    Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius equation. J Therm Anal Calorim. 1977;11:445–7.CrossRefGoogle Scholar
  34. 34.
    Kandelbauer A, Wuzella G, Mahendran A, Taudes I, Widsten P. Model-free kinetic analysis of melamine-formaldehyde resin cure. Chem Eng J. 2009;152:556–65.CrossRefGoogle Scholar
  35. 35.
    Sbirrazzuoli N, Vincent L, Mija A, Guigo N. Integral, differential and advanced isoconversional methods complex mechanisms and isothermal predicted conversion–time curves. Chemom Intell Lab Syst. 2009;96:219–26.CrossRefGoogle Scholar
  36. 36.
    Xia Y, Huang Y, Li Y, Liao S, Long Q, Liang J. LaPO4: Ce, Tb, Yb phosphor-synthesis and kinetics study for thermal process of precursor by Vyazovkin, OFW, KAS, starink and masterplosts methods. J Therm Anal Calorim. 2015;120:1635–43.CrossRefGoogle Scholar
  37. 37.
    Pouretedal HR, Damiri S, Nosrati P, Ghaemi EF. The kinetic of mass loss of grades A and B of melted TNT by isothermal and non-isothermal gravimetric methods. Def Technol. 2018;14:126–31.CrossRefGoogle Scholar
  38. 38.
    Milicevic B, Marinovic-Cincovic M, Dramicanin MD. Non-isothermal crystallization kinetics of Y2Ti2O7. Power Technol. 2017;310:67–73.CrossRefGoogle Scholar
  39. 39.
    Jankovic B, Adnadevic B, Jankovic J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: thermogravimetric analysis. Thermochim Acta. 2007;452:106–15.CrossRefGoogle Scholar
  40. 40.
    Gotor JF, Criado MJ, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRefGoogle Scholar
  41. 41.
    Málek J. The kinetic analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.CrossRefGoogle Scholar
  42. 42.
    Málek J. A computer program for kinetic analysis of nonisothermal thermoanalytical data. Thermochim Acta. 1989;138:337–46.CrossRefGoogle Scholar
  43. 43.
    Kullyakool S, Danvirutai C, Siriwong K, Noisong P. Thermal behaviour, surface properties and vibrational spectroscopic studies of the synthesized Co3xNi3−3x(PO4)2·8H2O (0 ≤ x ≤ 1). Solid State Sci. 2013;24:147–53.CrossRefGoogle Scholar
  44. 44.
    Chapman AC, Thirlwell LE. Spectra of phosphorus compounds: I. The infra-red spectra of orthophosphates. Spectrochim Acta. 1964;20(6):937–47.CrossRefGoogle Scholar
  45. 45.
    Umbreit HM, Jedrasiewicz A, Klos J, Zabicka M. Research on influence of temperature (20–1000 °C) on binary mixtures of solid solution of Li3PO4–Mg3(PO4)2·8H2O. Phosphorus Res Bull. 2005;18:15–24.CrossRefGoogle Scholar
  46. 46.
    Xin JR, Kun YH, Dong XG, Yan T, He BZ, Heng L. Vacuum-assisted synthesis of Fe3(PO4)2·8H2O and its influence on structure, morphology and electrochemical performance of LiFePO4/C. Acta Phys Chim Sin. 2014;30:866–72.Google Scholar
  47. 47.
    Aboulkas A, El HK, Nadifiyine M, El BA. Thermogravimetric characteristics and kinetic of co-pyrolysis of olive residue with high density polyethylene. J Therm Anal Calorim. 2008;13:737–43.CrossRefGoogle Scholar
  48. 48.
    Babu VK, Devi SL, Veeraiah V, Anand K. Structural and dielectric studies of LiNiPO4 and LiNi0.5Co0.5PO4 cathode materials for lithium–ion batteries. J Asian Ceram Soc. 2016;4:269–76.CrossRefGoogle Scholar
  49. 49.
    Julien MC, Mauger A, Zaghib K, Veillette R, Groult H. Structural and electronic properties of the LiNiPO4 orthophosphate. Ionics. 2012;18:625–33.CrossRefGoogle Scholar
  50. 50.
    Cilgi KG, Cetisli H. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 2009;98:855–61.CrossRefGoogle Scholar
  51. 51.
    Zhang X, He C, Wang L, Liu J, Deng M, Feng Q. Non-isothermal kinetic analysis of thermal dehydration of La2(CO3)3·3.4H2O in air. Trans Nonferrous Met Soc China. 2014;24:3378–85.CrossRefGoogle Scholar
  52. 52.
    Muraleedharan K, Labeeb P. Kinetics of the thermal dehydration of potassium titanium oxalate, K2TiO(C2O4)2·2H2O. J Therm Anal Calorim. 2012;109:89–96.CrossRefGoogle Scholar
  53. 53.
    Sronsri C, Noisong P, Danvirutai C. Isoconversional kinetic, mechanism and thermodynamic studies of the thermal decomposition of NH4Co0.8Zn0.1Mn0.1PO4·H2O. J Therm Anal Calorim. 2015;120:1689–701.CrossRefGoogle Scholar
  54. 54.
    Turmanova SC, Genieva SD, Dimitrova AS, Vlaev LT. Non-isothermal degradation kinetics of filled with rise husk ash polypropene composites. Express Polym Lett. 2008;2:133–46.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Anucha Suekkhayad
    • 1
    • 2
  • Pittayagorn Noisong
    • 1
    • 2
    Email author
  • Chanaiporn Danvirutai
    • 1
    • 2
  1. 1.Material Chemistry Research Center, Department of Chemistry, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand

Personalised recommendations