Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1457–1469 | Cite as

Effects of Zr addition on solidification characteristics of Al–Zn–Mg–Cu alloy using thermal analysis

  • Saman Mostafapoor
  • Mehdi Malekan
  • Masoud Emamy
Article
  • 101 Downloads

Abstract

The effect of Zr as a grain refiner on the solidification behavior, micro- and macrostructure of a new Al–Zn–Mg–Cu aluminum super-high strength alloy containing high Zn content was studied. The addition of 2 mass% Zr reduced the grain size from 1500 to 190 μm. Moreover, the dendritic structure of the alloy altered from a coarse, elongated and non-uniform morphology to a rosette-like shape and more uniform one. The parameters of liquidus region of cooling curve obtained from thermal analysis were in a good correlation with grain size results. The maximum of first derivative in the liquidus region was introduced beside recalescence undercooling which could predict the grain refinement level even after disappearing of recalescence in the cooling curve. Furthermore, the addition of 1 mass% Zr enhanced fraction of solid in dendrite coherency point from 21 to 31% and lessened the amounts of porosity from 2.3 to 1.4%.

Keywords

Al–Zn–Mg–Cu alloy Grain refinement Solidification Thermal analysis 

Notes

Acknowledgements

The authors would like to thank University of Tehran for financial support of this research.

References

  1. 1.
    Stefanescu D. Science and engineering of casting solidification. New York: Springer; 2008.Google Scholar
  2. 2.
    Shabestari SG, Malekan M. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J Alloys Compd. 2010;492:134–42.CrossRefGoogle Scholar
  3. 3.
    Upadhya K, Stefanescu D, Lieu K, Yeager D, editors. Computer-aided cooling curve analysis: principles and applications in metal casting. In: 93rd AFS Casting Congress; 1989.Google Scholar
  4. 4.
    Shin J-S, Lee Z-H. Computer-aided cooling curve analysis of A356 aluminum alloy. Met Mater Int. 2004;10:89–96.CrossRefGoogle Scholar
  5. 5.
    Li J, Chen R, Ma Y, Ke W. Computer-aided cooling curve thermal analysis and microstructural characterization of Mg–Gd–Y–Zr system alloys. Thermochim Acta. 2014;590:232–41.CrossRefGoogle Scholar
  6. 6.
    Farahany S, Bakhsheshi-Rad HR, Idris MH, Kadir MRA, Lotfabadi AF, Ourdjini A. In-situ thermal analysis and macroscopical characterization of Mg–xCa and Mg–0.5 Ca–xZn alloy systems. Thermochim Acta. 2012;527:180–9.CrossRefGoogle Scholar
  7. 7.
    Hegde S, Prabhu KN. Modification of eutectic silicon in Al–Si alloys. J Mater Sci. 2008;43:3009–27.CrossRefGoogle Scholar
  8. 8.
    Ludwig TH, Schaffer PL, Arnberg L. Influence of some trace elements on solidification path and microstructure of Al–Si foundry alloys. Metall Mater Trans A. 2013;44:3783–96.CrossRefGoogle Scholar
  9. 9.
    Eguskiza S, Niklas A, Fernández-Calvo AI, Santos F, Djurdjevic M. Study of strontium fading in Al–Si–Mg and Al–Si–Mg–Cu alloy by thermal analysis. Int J Metalcast. 2015;9:43–50.CrossRefGoogle Scholar
  10. 10.
    Coniglio N, Cross C. Characterization of solidification path for aluminium 6060 weld metal with variable 4043 filler dilution. Weld World. 2006;50:14–23.CrossRefGoogle Scholar
  11. 11.
    Ghoncheh M, Shabestari SG, Abbasi M. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique. J Therm Anal Calorim. 2014;117:1253–61.CrossRefGoogle Scholar
  12. 12.
    Ghoncheh M, Shabestari SG. Effect of cooling rate on the dendrite coherency point during solidification of Al2024 alloy. Metall Mater Trans A. 2015;46:1287–99.CrossRefGoogle Scholar
  13. 13.
    Fornaro O, Palacio HA. Study of dilute Al–Cu solidification by cooling curve analysis. J Mater Sci. 2009;44:4342–7.CrossRefGoogle Scholar
  14. 14.
    Kamga HK, Larouche D, Bournane M, Rahem A. Solidification of aluminum–copper B206 alloys with iron and silicon additions. Metall Mater Trans A. 2010;41:2844–55.CrossRefGoogle Scholar
  15. 15.
    Haghdadi N, Phillion A, Maijer D. Microstructure characterization and thermal analysis of aluminum alloy B206 during solidification. Metall Mater Trans A. 2015;46:2073–81.CrossRefGoogle Scholar
  16. 16.
    Farahany S, Ourdjini A, Idris M, Shabestari SG. Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J Therm Anal Calorim. 2013;114:705–17.CrossRefGoogle Scholar
  17. 17.
    Farahany S, Idris MH, Ourdjini A, Faris F, Ghandvar H. Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis. J Therm Anal Calorim. 2015;119:1593–601.CrossRefGoogle Scholar
  18. 18.
    Malekan M, Dayani D, Mir A. Thermal analysis study on the simultaneous grain refinement and modification of 380.3 aluminum alloy. J Therm Anal Calorim. 2014;115:393–9.CrossRefGoogle Scholar
  19. 19.
    Malekan M, Shabestari SG. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2010;103:453–8.CrossRefGoogle Scholar
  20. 20.
    Malekan M, Shabestari SG. Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy. Metall Mater Trans A. 2009;40:3196–203.CrossRefGoogle Scholar
  21. 21.
    Malekan M, Naghdali S, Abrishami S, Mirghaderi SH. Effect of cooling rate on the solidification characteristics and dendrite coherency point of ADC12 aluminum die casting alloy using thermal analysis. J Therm Anal Calorim. 2016;124:601–9.  https://doi.org/10.1007/s10973-015-5232-6.CrossRefGoogle Scholar
  22. 22.
    Timelli G, Camicia G, Ferraro S. Effect of grain refinement and cooling rate on the microstructure and mechanical properties of secondary Al–Si–Cu alloys. J Mater Eng Perform. 2014;23:611–21.CrossRefGoogle Scholar
  23. 23.
    Ruan Y, Wei B. Rapid solidification of undercooled Al–Cu–Si eutectic alloys. Chin Sci Bull. 2009;54:53–8.CrossRefGoogle Scholar
  24. 24.
    Farahany S, Ourdjini A, Idrsi M, Shabestari SG. Evaluation of the effect of Bi, Sb, Sr and cooling condition on eutectic phases in an Al–Si–Cu alloy (ADC12) by in situ thermal analysis. Thermochim Acta. 2013;559:59–68.CrossRefGoogle Scholar
  25. 25.
    Gonzalez C, Genesca J, Alvarez O, Juarez-Islas J. Solidification of chill-cast Al–Zn–Mg alloys to be used as sacrificial anodes. Metall Mater Trans A. 2003;34:2991–7.CrossRefGoogle Scholar
  26. 26.
    Ahmad AH, Naher S, Brabazon D, editors. Thermal profiles and fraction solid of aluminium 7075 at different cooling rate conditions. Key Engineering Materials. Trans Tech Publications; 2013.Google Scholar
  27. 27.
    Gao T, Zhang Y, Liu X. Influence of trace Ti on the microstructure, age hardening behavior and mechanical properties of an Al–Zn–Mg–Cu–Zr alloy. Mater Sci Eng A. 2014;598:293–8.  https://doi.org/10.1016/j.msea.2014.01.062.CrossRefGoogle Scholar
  28. 28.
    Deng Y, Yin Z, Zhao K, Duan J, Hu J, He Z. Effects of Sc and Zr microalloying additions and aging time at 120 C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros Sci. 2012;65:288–98.  https://doi.org/10.1016/j.corsci.2012.08.024.CrossRefGoogle Scholar
  29. 29.
    Fang HC, Chao H, Chen KH. Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys. Mater Sci Eng A. 2014;610:10–6.  https://doi.org/10.1016/j.msea.2014.05.021.CrossRefGoogle Scholar
  30. 30.
    Wu Y, Froes F, Alvarez A, Li C, Liu J. Microstructure and properties of a new super-high-strength Al–Zn–Mg–Cu alloy C912. Mater Des. 1997;18:211–5.CrossRefGoogle Scholar
  31. 31.
    Pourkia N, Emamy M, Farhangi H, Ebrahimi SHS. The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy. Mater Sci Eng A. 2010;527:5318–25.  https://doi.org/10.1016/j.msea.2010.05.009.CrossRefGoogle Scholar
  32. 32.
    Seyed Ebrahimi SH, Emamy M. Effects of Al–5Ti–1B and Al–5Zr master alloys on the structure, hardness and tensile properties of a highly alloyed aluminum alloy. Mater Des. 2010;31:200–9.  https://doi.org/10.1016/j.matdes.2009.06.031.CrossRefGoogle Scholar
  33. 33.
    Seyed Ebrahimi S, Emamy M, Pourkia N, Lashgari H. The microstructure, hardness and tensile properties of a new super high strength aluminum alloy with Zr addition. Mater Des. 2010;31:4450–6.CrossRefGoogle Scholar
  34. 34.
    Fan Z, Wang Y, Zhang Y, Qin T, Zhou XR, Thompson GE, et al. Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater. 2015;84:292–304.  https://doi.org/10.1016/j.actamat.2014.10.055.CrossRefGoogle Scholar
  35. 35.
    Easton M, StJohn D. Grain refinement of aluminum alloys: part I. The nucleant and solute paradigms—a review of the literature. Metall Mater Trans A. 1999;30:1613–23.  https://doi.org/10.1007/s11661-999-0098-5.CrossRefGoogle Scholar
  36. 36.
    Meng Y, Cui J, Zhao Z, He L. Effect of Zr on microstructures and mechanical properties of an AlMgSiCuCr alloy prepared by low frequency electromagnetic casting. Mater Charact. 2014;92:138–48.  https://doi.org/10.1016/j.matchar.2014.02.013.CrossRefGoogle Scholar
  37. 37.
    Wagner JA, Shenoy R. The effect of copper, chromium, and zirconium on the microstructure and mechanical properties of Al–Zn–Mg–Cu alloys. Metall Mater Trans A. 1991;22:2809–18.CrossRefGoogle Scholar
  38. 38.
    Fang HC, Chen KH, Chen X, Huang LP, Peng GS, Huang BY. Effect of Zr, Cr and Pr additions on microstructures and properties of ultra-high strength Al–Zn–Mg–Cu alloys. Mater Sci Eng A. 2011;528:7606–15.  https://doi.org/10.1016/j.msea.2011.06.018.CrossRefGoogle Scholar
  39. 39.
    Cibula A. The grain refinement of aluminium alloy castings by additions of titanium and boron. J Inst Met. 1951;80:1–16.Google Scholar
  40. 40.
    Crossley F, Mondolfo L. Mechanism of grain refinement in aluminum alloys. J Met. 1951;3:1143.Google Scholar
  41. 41.
    Backerud L, Yidong S. Grain refining mechanisms in aluminum as a result of addition of titanium and boron. Part I. Aluminium. 1991;67:780–5.Google Scholar
  42. 42.
    Jones G. Grain refinement of castings using inoculants for nucleation above liquidus. Solidif Process. 1987;1987:496–9.Google Scholar
  43. 43.
    Mohanty PS, Gruzleski JE. Mechanism of grain refinement in aluminium. Acta Metall Mater. 1995;43:2001–12.CrossRefGoogle Scholar
  44. 44.
    Maxwell I, Hellawell A. A simple model for grain refinement during solidification. Acta Metall. 1975;23:229–37.CrossRefGoogle Scholar
  45. 45.
    Johnsson M, Backerud L, Sigworth GK. Study of the mechanism of grain refinement of aluminum after additions of Ti-and B-containing master alloys. Metall Trans A. 1993;24:481–91.CrossRefGoogle Scholar
  46. 46.
    Wang F, Qiu D, Liu Z-L, Taylor JA, Easton MA, Zhang M-X. The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 2013;61:5636–45.  https://doi.org/10.1016/j.actamat.2013.05.044.CrossRefGoogle Scholar
  47. 47.
    Kierkus W, Sokolowski J. Recent advances in CCA: a new method of determining baseline equations (99–66). Trans Am Foundrym Soc. 1999;107:161–8.Google Scholar
  48. 48.
    Erbas KC. On the Newtonian thermal analysis of casting: a critical approach. Beykent Univ J Sci Eng. 2014;7(2):47–60.Google Scholar
  49. 49.
    Murray J, Peruzzi A, Abriata J. The Al–Zr (aluminum–zirconium) system. J Phase Equilib. 1992;13:277–91.CrossRefGoogle Scholar
  50. 50.
    Mondal C, Mukhopadhyay A. On the nature of T (Al2Mg3Zn3) and S (Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater Sci Eng A. 2005;391:367–76.CrossRefGoogle Scholar
  51. 51.
    Xie F, Yan X, Ding L, Zhang F, Chen S, Chu MG, et al. A study of microstructure and microsegregation of aluminum 7050 alloy. Mater Sci Eng A. 2003;355:144–53.CrossRefGoogle Scholar
  52. 52.
    McCartney D. Grain refining of aluminium and its alloys using inoculants. Int Mater Rev. 1989;34:247–60.CrossRefGoogle Scholar
  53. 53.
    Djurdjevic M, Sokolowski J, Odanovic Z. Determination of dendrite coherency point characteristics using first derivative curve versus temperature. J Therm Anal Calorim. 2012;109:875–82.CrossRefGoogle Scholar
  54. 54.
    Chávez-Zamarripa R, Ramos-Salas JA, Talamantes-Silva J, Valtierra S, Colás R. Determination of the dendrite coherency point during solidification by means of thermal diffusivity analysis. Metall Mater Trans A. 2007;38:1875–9.CrossRefGoogle Scholar
  55. 55.
    Arnberg L, Chai G, Backerud L. Determination of dendritic coherency in solidifying melts by rheological measurements. Mater Sci Eng A. 1993;173:101–3.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Saman Mostafapoor
    • 1
  • Mehdi Malekan
    • 1
  • Masoud Emamy
    • 1
  1. 1.School of Metallurgy and Materials Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations