Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1471–1480 | Cite as

Experimental study on the fire characteristics of typical nitrocellulose mixtures using a cone calorimeter

  • Ruichao Wei
  • Shenshi Huang
  • Que Huang
  • Dongxu Ouyang
  • Qinpei Chen
  • Richard Yuen
  • Jian WangEmail author


To further understand the safety performance of energetic materials such as nitrocellulose (NC) mixtures, it is necessary to obtain the fire properties of commonly used NC mixtures. In the present study, an in situ calorimeter was employed to investigate the fire characteristics of pure NC, NC-plasticizer mixture and two NC-humectant mixtures, namely NC-isopropanol and NC-ethanol mixtures. The plasticizer (dibutyl phthalate) and humectants (ethanol or isopropanol) can effectively reduce the fire risk of NC. NC-plasticizer is more risky than NC-humectants in the burning process. Compared with the NC with isopropanol, the NC with ethanol exhibits higher fire risk. Also, the thermogravimetric (TG) curves of four NC samples were measured by a TG analyzer. The curves indicate that the decomposition of pure NC is more dramatic than NC mixtures, and the NC with plasticizer dibutyl phthalate can decompose in advance.


Safety performance Nitrocellulose mixtures Fire characteristics In situ calorimeter 

List of symbols


The orifice flow meter calibration constant




Energy released per unit mass of O2 consumed (kJ kg−1)

\(\Delta H_{{{\text{c}}1}}\)

Effective heat of combustion based on maximum mass loss rate

\(\Delta H_{{{\text{c}}2}}\)

Effective heat of combustion based on average mass loss rate


Evaporation content of humectant


Mass loss range of decomposition of NC samples


Mass loss rate

\(\dot{m}_{{{\text{O}}_{2} }}\)

Mass flow rate of O2 after the ignition of the material (kg s−1)

\(\dot{m}_{{{\text{O}}_{2} }}^{0}\)

Mass flow rates of O2 before the test (kg s−1)


The pressure differential of orifice meter


Heat release rate (kW)


Absolute temperature of the gas at the orifice meter


Onset decomposition temperature


Maximum decomposition temperature








This research was supported by the National Natural Science Foundation of China (No. 51376172) and the grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (contract Grant No. CityU 11301015).


  1. 1.
    Katoh K, Soramoto T, Higashi E, Kawaguchi S, Kumagae K, Ito S, et al. Influence of water on the thermal stability of nitrocellulose. Sci Technol Energ Mater. 2014;75(1–2):44–9.Google Scholar
  2. 2.
    Wei R, He Y, Liu J, He Y, Mi W, Yuen R, et al. Experimental study on the fire properties of nitrocellulose with different structures. Materials. 2017;10(3):316.CrossRefGoogle Scholar
  3. 3.
    Fu G, Wang J, Yan M. Anatomy of Tianjin Port fire and explosion: process and causes. Process Saf Prog. 2016;35(3):216–20.CrossRefGoogle Scholar
  4. 4.
    Zhao B. Facts and lessons related to the explosion accident in Tianjin Port, China. Nat Hazards. 2016;84(1):707–13.CrossRefGoogle Scholar
  5. 5.
    Jessup RS, Prosen E. Heats of combustion and formation of cellulose and nitrocellulose (cellulose nitrate). J Res Natl Bur Stand. 1950;44:387.CrossRefGoogle Scholar
  6. 6.
    Guo S, Wang Q, Sun J, Liao X, Wang ZS. Study on the influence of moisture content on thermal stability of propellant. J Hazard Mater. 2009;168(1):536–41.CrossRefGoogle Scholar
  7. 7.
    Zhang X, Hikal WM, Zhang Y, Bhattacharia SK, Li L, Panditrao S, et al. Direct laser initiation and improved thermal stability of nitrocellulose/graphene oxide nanocomposites. Appl Phys Lett. 2013;102(14):5428.Google Scholar
  8. 8.
    Zhang X, Weeks BL. Preparation of sub-micron nitrocellulose particles for improved combustion behavior. J Hazard Mater. 2014;268(3):224.CrossRefGoogle Scholar
  9. 9.
    Zhao N, Li J, Gong H, An T, Zhao F, Yang A, et al. Effects of α-Fe2O3 nanoparticles on the thermal behavior and non-isothermal decomposition kinetics of nitrocellulose. J Anal Appl Pyrolysis. 2016;120:165–73.CrossRefGoogle Scholar
  10. 10.
    Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;162(2):1141–4.CrossRefGoogle Scholar
  11. 11.
    Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168(2–3):1134–9.CrossRefGoogle Scholar
  12. 12.
    Rong L, Binke N, Yuan W, Zhengquan Y, Hu R. Estimation of the critical temperature of thermal explosion for the highly nitrated nitrocellulose using non-isothermal DSC. J Therm Anal Calorim. 1999;58(2):369–73.CrossRefGoogle Scholar
  13. 13.
    Wang H, Zhang H, Hu R, Yao E, Guo P. Estimation of the critical rate of temperature rise for thermal explosion of nitrocellulose using non-isothermal DSC. J Therm Anal Calorim. 2014;115(2):1099–110.CrossRefGoogle Scholar
  14. 14.
    Kumita Y, Wada Y, Arai M, Tamura M. A study on thermal stability of nitrocellulose. Kayaku Gakkaishi/J Jpn Explos Soc. 2002;63(5):271–4.Google Scholar
  15. 15.
    Jin M, Luo N, Li G, Luo Y. The thermal decomposition mechanism of nitrocellulose aerogel. J Therm Anal Calorim. 2015;121(2):901–8.CrossRefGoogle Scholar
  16. 16.
    Katoh K, Ito S, Kawaguchi S, Higashi E, Nakano K, Ogata Y, et al. Effect of heating rate on the thermal behavior of nitrocellulose. J Therm Anal Calorim. 2010;100(1):303–8.CrossRefGoogle Scholar
  17. 17.
    ISO 5660-1:2002. Reaction-to-fire tests—heat release, smoke production and mass loss rate—part 1: heat release rate (cone calorimeter method).Google Scholar
  18. 18.
    He Y, He Y, Liu J, Li P, Chen M, Wei R, et al. Experimental study on the thermal decomposition and combustion characteristics of nitrocellulose with different alcohol humectants. J Hazard Mater. 2017;340:202.CrossRefGoogle Scholar
  19. 19.
    Wei R, He Y, Zhang Z, He J, Yuen R, Wang J. Effect of different humectants on the thermal stability and fire hazard of nitrocellulose. J Therm Anal Calorim. 2018. Scholar
  20. 20.
    WJ9028-2005. Specification for Nitrocellulose of Lacquers. National Defense Science and Technology Industry Committee, 2005.Google Scholar
  21. 21.
    Jiang L, Xiao HH, He JJ, Sun Q, Gong L, Sun JH. Application of genetic algorithm to pyrolysis of typical polymers. Fuel Process Technol. 2015;138(7):48–55.CrossRefGoogle Scholar
  22. 22.
    Jiang L, Zhang D, Li M, He J-J, Gao Z-H, Zhou Y, et al. Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel. 2018;222:11–20.CrossRefGoogle Scholar
  23. 23.
    Parker WJ. Calculations of the heat release rate by oxygen consumption for various applications. J Fire Sci. 1984;2(5):380–95.CrossRefGoogle Scholar
  24. 24.
    Redfern J. Rate of heat release measurement using the cone calorimeter. J Therm Anal. 1989;35(6):1861–77.CrossRefGoogle Scholar
  25. 25.
    Huang Q, Liu C, Wei R, Wang J. Experimental study of polyethylene pyrolysis and combustion over HZSM-5, HUSY, and MCM-41. J Hazard Mater. 2017;333:10–22.CrossRefGoogle Scholar
  26. 26.
    Chen M, He Y, De Zhou C, Richard Y, Wang J. Experimental study on the combustion characteristics of primary lithium batteries fire. Fire Technol. 2016;52(2):365–85.CrossRefGoogle Scholar
  27. 27.
    Liu J, Chen M, Lin X, Yuen R, Wang J. Impacts of ceiling height on the combustion behaviors of pool fires beneath a ceiling. J. Therm Anal Calorim. 2016;126(2):881–9.CrossRefGoogle Scholar
  28. 28.
    Chen M, Zhou D, Chen X, Zhang W, Liu J, Yuen R, et al. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122(2):755–63.CrossRefGoogle Scholar
  29. 29.
    Lin X, He Y, Jiang W, Liu J, Chen M, Yao W, et al. Prediction of heat release rate of shredded paper tapes based on profile burning surface. J Therm Anal Calorim. 2017;130(3):2215–25.CrossRefGoogle Scholar
  30. 30.
    Luo M, He Y, Beck V. Application of field model and two-zone model to flashover fires in a full-scale multi-room single level building. Fire Saf J. 1997;29(1):1–25.CrossRefGoogle Scholar
  31. 31.
    Yang HY, Zhou XD, Yang LZ, Zhang TL. Experimental studies on the flammability and fire hazards of photovoltaic modules. Materials. 2015;8(7):4210–25.CrossRefGoogle Scholar
  32. 32.
    Janssens ML. Measuring rate of heat release by oxygen consumption. Fire Technol. 1991;27(3):234–49.CrossRefGoogle Scholar
  33. 33.
    Huggett C. Estimation of rate of heat release by means of oxygen consumption measurements. Fire Mater. 1980;4(2):61–5.CrossRefGoogle Scholar
  34. 34.
    Chen M, Liu J, Lin X, Huang Q, Yuen R, Wang J. Combustion characteristics of primary lithium battery at two altitudes. J Therm Anal Calorim. 2016;124(2):865–70.CrossRefGoogle Scholar
  35. 35.
    Chen M, Yuen R, Wang J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries. J Therm Anal Calorim. 2017;129(1):181–8.CrossRefGoogle Scholar
  36. 36.
    Jiang L, Miller CH, Gollner MJ, Sun J-H. Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proc Combust Inst. 2017;36(2):2987–94.CrossRefGoogle Scholar
  37. 37.
    Jiang L, He J-J, Sun J-H. Sample width and thickness effects on upward flame spread over PMMA surface. J Hazard Mater. 2018;342:114–20.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ruichao Wei
    • 1
    • 2
  • Shenshi Huang
    • 1
    • 2
  • Que Huang
    • 1
  • Dongxu Ouyang
    • 1
  • Qinpei Chen
    • 1
  • Richard Yuen
    • 2
  • Jian Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2.Department of Civil and Architectural EngineeringCity University of Hong KongKowloonPeople’s Republic of China

Personalised recommendations