Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 4, pp 2117–2124 | Cite as

Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS

  • Tao Zhou
  • Ting Wu
  • Haonan Xiang
  • Zhichao Li
  • Zhongliang Xu
  • Qinghong KongEmail author
  • Junhao ZhangEmail author
  • Zhi Li
  • Yetang Pan
  • Deyi Wang


To simultaneously improve flame retardancy and dynamic mechanical properties of epoxy resin (EP) nanocomposites, layered zirconium phenylphosphate (ZrPP) was successfully synthesized through mixed solvothermal technique and added with polyhedral oligomeric silsesquioxane (POSS) to EP to prepare ZrPP/POSS/EP nanocomposites. The results indicated that molecular formula of ZrPP was Zr(O3PC6H5)2·H2O with suitable thermal stability as flame retardant for EP. Based on the synergism of ZrPP and POSS, ZrPP/POSS/EP nanocomposites exhibit higher thermal stability, better flame retardancy, and more residue than pure EP. More importantly, addition of low content of ZrPP optimized dynamic mechanical properties of ZrPP/POSS/EP nanocomposites. Compared with those of 5 mass% POSS/EP, the storage modulus of 1 mass% ZrPP/4 mass% POSS/EP increased by 9% and the glass transition temperature scarcely changed, which was speculated that there were some of three-dimensional POSS molecules intercalating into interlayers of ZrPP and led to excellent dispersion state and increased nanoreinforcing effect in EP nanocomposites.


Epoxy resin Zirconium phenylphosphate POSS Thermal stability Flame retardancy Dynamic mechanical properties 



This work was supported by Natural Science Foundation of Jiangsu Province (No. BK20150505), the National Natural Science Foundation of China (No. 51603091), the Open Project Program of Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University (No. KLET1609), Foundation from Marine Equipment and Technology Institute for Jiangsu University of Science and Technology (No. HZ20170015).


  1. 1.
    De Farias MA, Coelho LAF, Pezzin SH. Hybrid nanocomposites based on epoxy/silsesquioxanes matrices reinforced with multi-walled carbon nanotubes. Mater Res Ibero Am J. 2015;18:1304–12.Google Scholar
  2. 2.
    Zhang Y, Yu B, Wang BB, Liew KM, Song L, Wang CM, Hu Y. Highly effective P–P synergy of a novel DOPO-based flame retardant for epoxy resin. Ind Eng Chem Res. 2017;56:1245–55.CrossRefGoogle Scholar
  3. 3.
    Tang S, Wachtendorf V, Klack P, Qian LJ, Dong YP, Schartel B. Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset. RSC Adv. 2017;7:720–8.CrossRefGoogle Scholar
  4. 4.
    Zhang JH, Kong QH, Wang DY. Simultaneously improving fire safety and mechanical properties of epoxy resin by Fe-CNTs via large-scale preparation. J Mater Chem A. 2018;6:6376–86.CrossRefGoogle Scholar
  5. 5.
    Zheng TC, Ni XY. Loading an organophosphorous flame retardant into halloysite nanotubes for modifying UV-curable epoxy resin. RSC Adv. 2016;6:57122–30.CrossRefGoogle Scholar
  6. 6.
    Kong QH, Wu T, Zhang JH, Wang DY. Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Compos Sci Technol. 2018;154:136–44.CrossRefGoogle Scholar
  7. 7.
    Bai HP, Zheng YP, Yang RL, Zhang AB, Wang N. Thermal and mechanical properties of liquid-like trisilanol isobutyl-polyhedral oligomeric silsesquioxanes (POSS) derivative/epoxy nanocomposites. Polym Compos. 2017;38:691–8.CrossRefGoogle Scholar
  8. 8.
    Kaliavaradhan K, Muthusamy S. Studies on novel tri-phthalonitrile phenyl polyhedral oligomeric silsesquioxane and the phthalonitrile-epoxy blends. High Perform Polym. 2016;28:296–308.CrossRefGoogle Scholar
  9. 9.
    Li S, Yan HX, Tang C, Niu S, Jia Y. Novel phosphorus-containing polyhedral oligomeric silsesquioxane designed for high-performance flame-retardant bismaleimide resins. J Polym Res. 2016;23:238.CrossRefGoogle Scholar
  10. 10.
    Wang QP, Xiong L, Liang HB, Huang SM. Synergistic effect of polyhedral oligomeric silsesquioxane and multiwalled carbon nanotubes on the flame retardancy and the mechanical and thermal properties of epoxy resin. J Macromol Sci Part B. 2016;55:1146–58.CrossRefGoogle Scholar
  11. 11.
    Li ZQ, Yang RJ. Flame retardancy, thermal and mechanical properties of sulfonate-containing polyhedral oligomeric silsesquioxane (S-POSS)/polycarbonate composites. Polym Degrad Stab. 2015;116:81–7.CrossRefGoogle Scholar
  12. 12.
    Blanco I, Bottino FA. Thermal characterization of a series of novel hepta cyclopentyl bridged POSS/PS nanocomposites. J Therm Anal Calorim. 2016;125:637–43.CrossRefGoogle Scholar
  13. 13.
    Xin CL, Ma XY, Chen F, Song CY, Qu XH. Synthesis of EP-POSS mixture and the properties of EP–POSS/epoxy, SiO2/epoxy, and SiO2/EP–POSS/epoxy nanocomposite. J Appl Polym Sci. 2013;130:810–9.CrossRefGoogle Scholar
  14. 14.
    Mya KY, He CB, Huang JC, Xiao Y, Dai J, Siow YP. Preparation and thermomechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. J Polym Sci Pol Chem. 2004;42:3490–503.CrossRefGoogle Scholar
  15. 15.
    Yang S, Wang J, Huo SQ, Cheng LF, Wang M. Preparation and flame retardancy of an intumescent flame-retardant epoxy resin system constructed by multiple flame-retardant compositions containing phosphorus and nitrogen heterocycle. Polym Degrad Stab. 2015;119:251–9.CrossRefGoogle Scholar
  16. 16.
    Nie SB, Liu L, Dai GL, Zhou C. Investigation on pyrolysis of intumescent flame-retardant polypropylene (PP) composites based on synchrotron vacuum ultraviolet photoionization combined with molecular-beam mass spectrometry. J Therm Anal Calorim. 2017;130:1003–9.CrossRefGoogle Scholar
  17. 17.
    Qiu SL, Ma C, Wang X, Zhou X, Feng XM, Yue RKK, Hu Y. Melamine-containing polyphosphazene wrapped ammonium polyphosphate: a novel multifunctional organic–inorganic hybrid flame retardant. J Hazard Mater. 2018;344:839–48.CrossRefPubMedGoogle Scholar
  18. 18.
    Vasiljević J, Jerman I, Jakša G, Alonngi J, Malucelli G, Zorko M, Tomšič B, Simončič B. Functionalization of cellulose fibres with DOPO-polysilsesquioxane flame retardant nanocoating. Cellulose. 2015;22:1893–910.CrossRefGoogle Scholar
  19. 19.
    Gu JW, Liang CB, Zhao XM, Gan B, Qiu H, Guo YQ, Yang XT, Zhang QY, Wang DY. Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Compos Sci Technol. 2017;139:83–9.CrossRefGoogle Scholar
  20. 20.
    You GY, Cheng ZQ, Tang YY, He HW. Functional group effect on char formation, flame retardancy and mechanical properties of phosphonate-triazine-based compound as flame retardant in epoxy resin. Ind Eng Chem Res. 2015;54:7309–19.CrossRefGoogle Scholar
  21. 21.
    Zhao XM, Yang LW, Martin FH, Zhang XQ, Wang R, Wang DY. Influence of phenylphosphonate based flame retardant on epoxy/glass fiber reinforced composites (GRE): flammability, mechanical and thermal stability properties. Compos Part B Eng. 2017;110:511–9.CrossRefGoogle Scholar
  22. 22.
    Raimondo M, Russo S, Guadagno L, Longo P, Chirico S, Mariconda A, Bonnaud L, Murariu O, Dubois P. Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins. RSC Adv. 2015;5:10974–86.CrossRefGoogle Scholar
  23. 23.
    Zhang WC, Fina A, Cuttica F, Camino G, Yang RJ. Blowing-out effect in flame retarding epoxy resins: insight by temperature measurements during forced combustion. Polym Degrad Stab. 2016;131:82–90.CrossRefGoogle Scholar
  24. 24.
    Zhang WC, Li XM, Yang RJ. Pyrolysis and fire behaviour of epoxy resin composites based on a phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS). Polym Degrad Stab. 2011;96:1821–32.CrossRefGoogle Scholar
  25. 25.
    Zhang WC, Li XM, Guo XY, Yang RJ. Mechanical and thermal properties and flame retardancy of phosphorus-containing polyhedral oligomeric silsesquioxane (DOPO-POSS)/polycarbonate composites. Polym Degrad Stab. 2010;95:2541–6.CrossRefGoogle Scholar
  26. 26.
    Zhang WC, Li XM, Yang RJ. Novel flame retardancy effects of DOPO-POSS on epoxy resins. Polym Degrad Stab. 2011;96:2167–73.CrossRefGoogle Scholar
  27. 27.
    Liu HL, Yu TT, Su DQ, Tang ZH, Zhang JH, Liu YJ, Yuan AH, Kong QH. Ultrathin Ni–Al layered double hydroxide nanosheets with enhanced supercapacitor performance. Ceram Int. 2017;43:14395–400.CrossRefGoogle Scholar
  28. 28.
    Kong QH, Zhang HK, Zheng L, Wang DY, Zhang JH. Effect on thermal and combustion behaviors of montmorillonite intercalation nickel compounds in polypropylene/IFR system. Polym Adv Technol. 2017;28:965–70.CrossRefGoogle Scholar
  29. 29.
    Liu H, Zhong Q, Kong QH, Zhang XG, Li YJ, Zhang JH. Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system. J Therm Anal Calorim. 2014;117:693–9.CrossRefGoogle Scholar
  30. 30.
    Chen C, Guo ZH, Ran SY, Fang ZP. Synthesis of cerium phenylphosphonate and its synergistic flame retardant effect with decabromodiphenyl oxide in glass-fiber reinforced poly(ethylene terephthalate). Polym Compos. 2014;35:539–47.CrossRefGoogle Scholar
  31. 31.
    Zhang JH, Kong QH, Yang LW, Wang DY. Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem. 2016;18:3066–74.CrossRefGoogle Scholar
  32. 32.
    Zhang JH, Yu TT, Chen JL, Liu HL, Su DQ, Tang ZH, Xie JF, Chen L, Yuan AH, Kong QH. Germanium-based complex derived porous GeO2 nanoparticles for building high performance Li-ion batteries. Ceram Int. 2018;44:1127–33.CrossRefGoogle Scholar
  33. 33.
    Zhang JH, Huang M, Xi BJ, Mi K, Yuan AH, Xiong SL. Systematic study of effect on enhancing specific capacity and electrochemical behaviors of lithium-sulfur batteries. Adv Energy Mater. 2017;8:201701330.Google Scholar
  34. 34.
    Montero B, Bellas R, Ramírez C, Rico M, Bouza R. Flame retardancy and thermal stability of organic-inorganic hybrid resins based on polyhedral oligomeric silsesquioxanes and montmorillonite clay. Compos Part B. 2014;63:67–76.CrossRefGoogle Scholar
  35. 35.
    Zhao B, Liang WJ, Wang JS, Li F, Liu YQ. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym Degrad Stab. 2016;133:162–73.CrossRefGoogle Scholar
  36. 36.
    Kong QH, Wu T, Zhang HK, Zhang Y, Zhang MM, Si TY, Yang L, Zhang JH. Improving flame retardancy of IFR/PP composites through the synergistic effect of organic montmorillonite intercalation cobalt hydroxides modified by acidified chitosan. Appl Clay Sci. 2017;146:230–7.CrossRefGoogle Scholar
  37. 37.
    Nie SB, Zhou C, Peng C, Liu L, Zhang C, Dong X, Wang DY. Thermal oxidative degradation kinetics of novel intumescent flame-retardant polyprolene composites. J Therm Anal Calorim. 2015;120:1183–91.CrossRefGoogle Scholar
  38. 38.
    Zhang JT, Zhang WX, Guan DB. Preparation and properties of epoxy resin/polyhedral oligomeric silsesquioxane hybrid materials. Polym Bull. 2016;73:113–23.CrossRefGoogle Scholar
  39. 39.
    Kalati EN, Wang X, Wang DY. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. J Mater Chem A. 2015;3:6819–26.CrossRefGoogle Scholar
  40. 40.
    Liu HZ, Zhang WA, Zheng SX. Stimuli responsive gels based on interpenetrating network of hydroxy propylcellulose and poly(N-isopropylacrylamide). Polymer. 2005;46:157–63.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Tao Zhou
    • 1
  • Ting Wu
    • 1
  • Haonan Xiang
    • 1
  • Zhichao Li
    • 1
  • Zhongliang Xu
    • 1
  • Qinghong Kong
    • 1
    Email author
  • Junhao Zhang
    • 2
    Email author
  • Zhi Li
    • 3
    • 4
  • Yetang Pan
    • 3
    • 4
  • Deyi Wang
    • 3
    • 4
  1. 1.School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Environmental and Chemical EngineeringJiangsu University of Science and TechnologyZhenjiangChina
  3. 3.IMDEA Materials InstituteGetafe, MadridSpain
  4. 4.Department of Materials SciencePolytechnic University of MadridMadridSpain

Personalised recommendations