Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 1, pp 729–750 | Cite as

Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater

  • A. I. AlsaberyEmail author
  • M. A. Ismael
  • A. J. Chamkha
  • I. Hashim
Article

Abstract

This paper investigates a steady mixed convection in a lid-driven square cavity subjected to an inclined magnetic field and heated by corner heater with an inserted square solid block. Water–Al\(_2\)O\(_3\) nanofluid fills the cavity based on Buongiorno’s two-phase model. A corner heater is configured in the left lower corner of the cavity by maintaining 40% of the bottom and vertical walls at constant hot temperature. The top horizontal wall is moving and maintained at a constant low temperature. The remainder walls are thermally insulated. The governing equations are solved numerically using the finite element method. The governing parameters are the nanoparticles volume fraction (\(0 \le \phi \le 0.04\)), Reynolds number (\(1 \le Re \le 500\)), Richardson number (\(0.01 \le Ri \le 100\)), Hartmann number (\(0 \le Ha \le 50\)) and the size of the inner solid (\(0.1 \le D \le 0.7\)). The other parameters: the Prandtl number, Lewis number, Schmidt number, ratio of Brownian to thermophoretic diffusivity and the normalized temperature parameter, are fixed at \(Pr=4.623\), \(Le=3.5\times 10^{5}\), \(Sc=3.55\times 10^{4}\), \(N_{\mathrm{BT}}=1.1\) and \(\delta =155\), respectively. The inclination of the magnetic field is fixed at \(\gamma =\frac{\pi }{4}\). Results show that at low Reynolds number, the increase in nanoparticles loading more the 2% becomes useless. It is also found that a big size of the solid block can augment heat transfer in the case of high values of both the Reynolds and Richardson numbers.

Keywords

Lid-driven cavity Magnetic field Thermophoresis Brownian Corner heater Buongiorno’s model 

Nomenclature

\(\overrightarrow{\mathbf{B }}\)

Applied magnetic field

\({\mathbf B} \)

Magnitude of magnetic field

\(C_{p}\)

Specific heat capacity

d

Side length of inner block

\(d_{\mathrm{f}}\)

Diameter of the base fluid molecule

\(d_{\mathrm{p}}\)

Diameter of the nanoparticle

D

Dimensionless side length of the inner block, \(D=d/L\)

\(D_{\mathrm{B}}\)

Brownian diffusion coefficient

\(D_{\mathrm{B0}}\)

Reference Brownian diffusion coefficient

\(D_{\mathrm{T}}\)

Thermophoretic diffusivity coefficient

\(D_{\mathrm{T0}}\)

Reference thermophoretic diffusion coefficient

\({\mathbf {g}}\)

Gravitational acceleration

Ha

Hartmann number

Gr

Grashof number

k

Thermal conductivity

\(K_{\mathrm{r}}\)

Square wall to nanofluid thermal conductivity ratio, \(K_{\mathrm{r}}=k_{\mathrm{w}}/k_{\mathrm{nf}}\)

L

Width and height of enclosure

Le

Lewis number

\(N_{\mathrm{BT}}\)

Ratio of Brownian to thermophoretic diffusivity

\(\overline{Nu}\)

Average Nusselt number

Pr

Prandtl number

Re

Reynolds number

\(Re_{\mathrm{B}}\)

Brownian motion Reynolds number

Ri

Richardson number, \(Ri=Gr/{Re}^2\)

Sc

Schmidt number

T

Temperature

\(T_0\)

Reference temperature (310 K)

\(T_{\mathrm{fr}}\)

Freezing point of the base fluid (273.15 K)

\({\mathbf {v}} \), \({\mathbf {V}} \)

Velocity and dimensionless velocity vector, respectively

\(u_{\mathrm{B}}\)

Brownian velocity of the nanoparticle

x, y and X, Y

Space coordinates and dimensionless space coordinates

Greek symbols

\(\alpha \)

Thermal diffusivity

\(\gamma \)

Inclination angle of magnetic field

\(\beta \)

Thermal expansion coefficient

\(\delta \)

Normalized temperature parameter

\(\theta \)

Dimensionless temperature

\(\mu \)

Dynamic viscosity

\(\nu \)

Kinematic viscosity

\(\rho \)

Density

\(\sigma \)

Electrical conductivity

\(\varphi \)

Solid volume fraction

\(\varphi ^*\)

Normalized solid volume fraction

\(\phi \)

Average solid volume fraction

subscript

b

Bottom wall

c

Cold

f

Base fluid

h

Hot

nf

Nanofluid

p

Solid nanoparticles

t

Top wall

w

Solid wall

Notes

Acknowledgements

The work was supported by the Universiti Kebangsaan Malaysia (UKM) research Grant DIP-2017-010.

References

  1. 1.
    Torrance K, Davis R, Eike K, Gill P, Gutman D, Hsui A, Lyons S, Zien H. Cavity flows driven by buoyancy and shear. J Fluid Mech. 1972;51(2):221.CrossRefGoogle Scholar
  2. 2.
    Ghia U, Ghia KN, Shin C. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys. 1982;48(3):387.CrossRefGoogle Scholar
  3. 3.
    Prasad AK, Koseff JR. Combined forced and natural convection heat transfer in a deep lid-driven cavity flow. Int J Heat Fluid Flow. 1996;17(5):460.CrossRefGoogle Scholar
  4. 4.
    Khanafer KM, Chamkha AJ. Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int J Heat Mass Transf. 1999;42(13):2465.CrossRefGoogle Scholar
  5. 5.
    Ismael MA, Pop I, Chamkha AJ. Mixed convection in a lid-driven square cavity with partial slip. Int J Therm Sci. 2014;82:47.CrossRefGoogle Scholar
  6. 6.
    Ismael MA. Numerical solution of mixed convection in a lid-driven cavity with arc-shaped moving wall. Eng Comput. 2017;34(3):869.CrossRefGoogle Scholar
  7. 7.
    Das SK, Choi SUS, Yu W, Pradeep T. Nanofluids: science and technology. Hoboken: Wiley; 2008.Google Scholar
  8. 8.
    Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9):2002.CrossRefGoogle Scholar
  9. 9.
    Ismael MA, Abu-Nada E, Chamkha AJ. Mixed convection in a square cavity filled with CuO-water nanofluid heated by corner heater. Int J Mech Sci. 2017;133:42.CrossRefGoogle Scholar
  10. 10.
    Sheikholeslami M, Shamlooei M, Moradi R. Fe\(_3\)O\(_4\)-ethylene glycol nanofluid forced convection inside a porous enclosure in existence of coulomb force. J Mol Liq. 2018;249:429.CrossRefGoogle Scholar
  11. 11.
    Abu-Nada E, Chamkha AJ. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur J Mech B/Fluids. 2010;29(6):472.CrossRefGoogle Scholar
  12. 12.
    Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manage. 2011;52(1):789.CrossRefGoogle Scholar
  13. 13.
    Sheikholeslami M, Shehzad S. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200.CrossRefGoogle Scholar
  14. 14.
    Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. Int J Heat Mass Transf. 2004;47(24):5181.CrossRefGoogle Scholar
  15. 15.
    Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128(3):240.CrossRefGoogle Scholar
  16. 16.
    Sheikholeslami M, Gorji-Bandpy M, Ganji D, Soleimani S. Thermal management for free convection of nanofluid using two phase model. J Mol Liq. 2014;194:179.CrossRefGoogle Scholar
  17. 17.
    Sheremet MA, Pop I. Mixed convection in a lid-driven square cavity filled by a nanofluid: Buongiorno’s mathematical model. Appl Math Comput. 2015;266:792.Google Scholar
  18. 18.
    Garoosi F, Rohani B, Rashidi MM. Two-phase mixture modeling of mixed convection of nanofluids in a square cavity with internal and external heating. Powder Technol. 2015;275:304.CrossRefGoogle Scholar
  19. 19.
    Esfandiary M, Mehmandoust B, Karimipour A, Pakravan HA. Natural convection of \(\text{ Al }_2\text{ O }_3\)-water nanofluid in an inclined enclosure with the effects of slip velocity mechanisms: Brownian motion and thermophoresis phenomenon. Int J Therm Sci. 2016;105:137.CrossRefGoogle Scholar
  20. 20.
    Motlagh SY, Soltanipour H. Natural convection of Al\(_2\)O\(_3\)-water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310.CrossRefGoogle Scholar
  21. 21.
    Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluidsa review. Renew Sustain Energy Rev. 2013;21:548.CrossRefGoogle Scholar
  22. 22.
    Pirmohammadi M, Ghassemi M. Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int Commun Heat Mass Transfer. 2009;36(7):776.CrossRefGoogle Scholar
  23. 23.
    Mahmoudi AH, Pop I, Shahi M. Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid. Int J Therm Sci. 2012;59:126.CrossRefGoogle Scholar
  24. 24.
    Ghasemi B, Aminossadati S, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50(9):1748.CrossRefGoogle Scholar
  25. 25.
    Kefayati GR. Effect of a magnetic field on natural convection in an open cavity subjugated to water/alumina nanofluid using lattice Boltzmann method. Int Commun Heat Mass Transfer. 2013;40:67.CrossRefGoogle Scholar
  26. 26.
    Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A. Simulation of mhd cuo-water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater. 2014;369:69.CrossRefGoogle Scholar
  27. 27.
    Selimefendigil F, Öztop HF. Natural convection and entropy generation of nanofluid filled cavity having different shaped obstacles under the influence of magnetic field and internal heat generation. J Taiwan Inst Chem Eng. 2015;56:42.CrossRefGoogle Scholar
  28. 28.
    Chamkha AJ, Ismael MA. Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu-water nanofluid with an aiding or opposing side wall. J Therm Sci Eng Appl. 2016;8(3):031009.CrossRefGoogle Scholar
  29. 29.
    Sivaraj C, Sheremet M. Mhd natural convection in an inclined square porous cavity with a heat conducting solid block. J Magn Magn Mater. 2017;426:351.CrossRefGoogle Scholar
  30. 30.
    Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of lattice Boltzmann method. J Mol Liq. 2017;234:364.CrossRefGoogle Scholar
  31. 31.
    Chamkha A, Rashad A, Armaghani T, Mansour M. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim. 2018;132(2):1291.CrossRefGoogle Scholar
  32. 32.
    Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772.CrossRefGoogle Scholar
  33. 33.
    Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212.CrossRefGoogle Scholar
  34. 34.
    Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921.CrossRefGoogle Scholar
  35. 35.
    House JM, Beckermann C, Smith TF. Effect of a centered conducting body on natural convection heat transfer in an enclosure. Numer Heat Transf. 1990;18(2):213.CrossRefGoogle Scholar
  36. 36.
    Ha MY, Jung MJ, Kim YS. Numerical study on transient heat transfer and fluid flow of natural convection in an enclosure with a heat-generating conducting body. Numer Heat Transf Part A Appl. 1999;35(4):415.CrossRefGoogle Scholar
  37. 37.
    Zhao FY, Liu D, Tang GF. Conjugate heat transfer in square enclosures. Heat Mass Transf. 2007;43(9):907.CrossRefGoogle Scholar
  38. 38.
    Mahmoodi M, Sebdani SM. Natural convection in a square cavity containing a nanofluid and an adiabatic square block at the center. Superlattices Microstruct. 2012;52(2):261.CrossRefGoogle Scholar
  39. 39.
    Mahapatra PS, De S, Ghosh K, Manna NK, Mukhopadhyay A. Heat transfer enhancement and entropy generation in a square enclosure in the presence of adiabatic and isothermal blocks. Numer Heat Transf Part A Appl. 2013;64(7):577.CrossRefGoogle Scholar
  40. 40.
    Ismael MA, Ghalib HS. Double diffusive natural convection in a partially layered cavity with inner solid conductive body, Sci Iran. 2017.  https://doi.org/10.24200/SCI.2017.4349
  41. 41.
    Alsabery AI, Siddheshwar PG, Saleh H, Hashim I. Transient free convective heat transfer in nanoliquid-saturated porous square cavity with a concentric solid insert and sinusoidal boundary condition. Superlattices Microstruct. 2016;100:1006.CrossRefGoogle Scholar
  42. 42.
    Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Mixed convection of Al\(_2\)O\(_3\)-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int J Heat Mass Transf. 2018;119:939.CrossRefGoogle Scholar
  43. 43.
    Maxwell JC. A treatise on electricity and magnetism, vol. II. Clarendon: Oxford University Press; 1904.Google Scholar
  44. 44.
    Oztop HF, Al-Salem K, Pop I. MHD mixed convection in a lid-driven cavity with corner heater. Int J Heat Mass Transf. 2011;54(15):3494.CrossRefGoogle Scholar
  45. 45.
    Ho C, Liu W, Chang Y, Lin C. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49(8):1345.CrossRefGoogle Scholar
  46. 46.
    Sheikhzadeh GA, Dastmalchi M, Khorasanizadeh H. Effects of nanoparticles transport mechanisms on Al\(_2\)O\(_3\)-water nanofluid natural convection in a square enclosure. Int J Therm Sci. 2013;66:51.CrossRefGoogle Scholar
  47. 47.
    Corcione M, Cianfrini M, Quintino A. Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties. Int J Therm Sci. 2013;71:182.CrossRefGoogle Scholar
  48. 48.
    Chon CH, Kihm KD, Lee SP, Choi SU. Empirical correlation finding the role of temperature and particle size for nanofluid (\(\text{Al}_2\text{O}_3\)) thermal conductivity enhancement. Appl Phys Lett. 2005;87(15):3107.CrossRefGoogle Scholar
  49. 49.
    Bergman TL, Incropera FP. Introduction to heat transfer, 6\({\rm th}\) edition. New York: Wiley; 2011.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Refrigeration & Air-conditioning Technical Engineering Department, College of Technical EngineeringThe Islamic UniversityNajafIraq
  2. 2.School of Mathematical Sciences, Faculty of Science & TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  3. 3.Mechanical Engineering Department, Engineering CollegeUniversity of BasrahBasrahIraq
  4. 4.Department of Mechanical Engineering, Prince Sultan Endowment for Energy and the EnvironmentPrince Mohammad Bin Fahd UniversityAl-KhobarSaudi Arabia
  5. 5.RAK Research and Innovation CenterAmerican University of Ras Al KhaimahRas Al KhaimahUnited Arab Emirates

Personalised recommendations