Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2065–2073 | Cite as

Brazilian green banana

A thermal, structural and rheological investigation of resistant starch from different cultivars
  • Layse do Prado Cordoba
  • Rafaela Gomes da Silva
  • Daiane de Souza Gomes
  • Egon Schnitzler
  • Nina WaszczynskyjEmail author


Banana is a fruit largely consumed in the world. Unripe banana contains a great quantity of starch, which is in majority the resistant starch type. This biopolymer has several health benefits, and it can be applied in food products and biofilms. The starch properties can vary according to its botanical origin. The aim of this study was to investigate the green banana starch structure obtained from three fruits of two genotypes of genomic groups of banana: Terra Plátano (AAB), Caturra Cavendish (AAA) and Prata Anã (AAB). The samples were studied for resistant starch content using differential scanning calorimetry (DSC), thermogravimetric analysis, viscosity analysis (RVA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and optical microscopy. By the DSC analysis, it was observed that the gelatinization phenomenon occurred at lower temperatures for Caturra Cavendish (AAA) and Prata Anã (AAB) in comparison with Terra Plátano (AAB). Thermogravimetric curves showed three mass losses to Terra Plátano (AAB) and four losses for Caturra Cavendish (AAA) and Prata Anã (AAB). By RVA it was observed that the starch from Terra Plátano (AAB) showed higher viscosity and retrogradation. The XRD indicated that the Caturra Cavendish (AAA) and Prata Anã (AAB) presented the C-type profile and the Terra Plátano (AAB) exhibited profile B-type and significantly higher relative crystallinity. SEM analysis and optical microscopy revealed that the granules have ellipsoidal and flattened shape. Considering the thermal and rheological characteristics presented, the use of banana starch in biofilms production and in food exposed to a cooking process is suggested.


Green banana starch Gelatinization Resistant starch DSC TG/DTG 



Authors express their gratitude to CAPES and CNPq for financial support.


  1. 1.
    Tribess TB, Hernández-Uribe JP, Méndez-Montealvo MGC, Menezes EW, Bello-Perez LA, Tadini CC. Thermal properties and resistant starch content of green banana flour (Musa cavendishii) produced at different drying conditions. LWT-Food Sci Technol. 2009;42(5):1022–5.CrossRefGoogle Scholar
  2. 2.
    Yang X, Song J, Fillmore S, Pang X, Zhang Z. Effect of high temperature on color, chlorophyll fluorescence and volatile biosynthesis in green-ripe banana fruit. Postharvest Biol Technol. 2011;62(3):246–57.CrossRefGoogle Scholar
  3. 3.
    Food and Agriculture Organization of the United Nations. Banana market review - 2015-2016. Rome, 2017. Accessed 15 Sep 2017.
  4. 4.
    Soto M. World situation and advances of banana production and technology. Rev Bras Frutic. 2011;33:13–28.CrossRefGoogle Scholar
  5. 5.
    Ploetz R, Freeman S, Konkol J, Al-Abed A, Naser Z, Shalan K, Barakat R, Israeli Y. Tropical race 4 of Panama disease in the Middle East. Phytoparasitica. 2015;43(3):283–93.CrossRefGoogle Scholar
  6. 6.
    Gao H, Huang S, Dong T, Yang Q, Yi G. Analysis of resistant starch degradation in postharvest ripening of two banana cultivars: Focus on starch structure and amylases. Postharvest Biol Technol. 2016;119:1–8.CrossRefGoogle Scholar
  7. 7.
    Dantas JLL, Filho WSS. Classificação botânica, origem e evolução. In: Alves EJ, et al., editors. Banana para exportação: aspectos técnicos de produção. Brasília: Embrapa; 1997. p. 9–13.Google Scholar
  8. 8.
    Sarawong C, Schoenlechner R, Sekiguchi K, Berghofer E, Ng PK. Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour. Food Chem. 2014;143:33–9.CrossRefGoogle Scholar
  9. 9.
    Agama-Acevedo E, Nuñez-Santiago MC, Alvarez-Ramirez J, Bello-Pérez LA. Physicochemical, digestibility and structural characteristics of starch isolated from banana cultivars. Carbohydr Polym. 2015;124:17–24.CrossRefGoogle Scholar
  10. 10.
    Liao HJ, Hung CC. Chemical composition and in vitro starch digestibility of green banana (cv. Giant Cavendish) flour and its derived autoclaved/debranched powder. LWT-Food Sci Technol. 2015;64(2):639–44.CrossRefGoogle Scholar
  11. 11.
    Zhang P, Hamaker BR. Banana starch structure and digestibility. Carbohydr Polym. 2012;87(2):1552–8.CrossRefGoogle Scholar
  12. 12.
    Ho LH, Tan TC, Aziz NAA, Bhat R. In vitro starch digestibility of bread with banana (Musa acuminata X balbisiana ABB cv. Awak) pseudo-stem flour and hydrocolloids. Food Biosci. 2015;12:10–7.CrossRefGoogle Scholar
  13. 13.
    Palma-Rodríguez HM, Aguirre-Álvarez G, Chavarría-Hernández N, Rodríguez-Hernández AI, Bello-Pérez LA, Vargas-Torres A. Oxidized banana starch–polyvinyl alcohol film: partial characterization. Starch-Stärke. 2012;64(11):882–9.CrossRefGoogle Scholar
  14. 14.
    Zamudio-Flores PB, Vargas-Torres A, Pérez-González J, Bosquez-Molina E, Bello-Pérez LA. Films prepared with oxidized banana starch: mechanical and barrier properties. Starch-Stärke. 2006;58(6):274–82.CrossRefGoogle Scholar
  15. 15.
    Silva RG, Cordoba LP, Ribeiro LS, Bet CD, Schnitzler E. Thermal, rheological and structural analysis of modified green banana starch with hydrochloric acid. Braz J Therm Anal. 2015;4(3):26–31.CrossRefGoogle Scholar
  16. 16.
    Von Loesecke HW. Bananas. 2nd ed. New York: Interscience Publishers; 1950.Google Scholar
  17. 17.
    Goñi I, Garcia-Diz L, Mañas E, Saura-Calixto F. Analysis of resistant starch: a method for foods and food products. Food Chem. 1996;56(4):445–9.CrossRefGoogle Scholar
  18. 18.
    Ito VC, Bet CD, Wojeicchowski JP, Demiate IM, Spoto MHF, Schnitzler E, Lacerda LG. Effects of gamma radiation on the thermoanalytical, structural and pasting properties of black rice (Oryza sativa L.) flour. J Thermal Anal Calorim. 2017. Scholar
  19. 19.
    Hornung PS, Oliveira CS, Lazzarotto M, Lazzarotto SRS, Schnitzler E. Investigation of the photo-oxidation of cassava starch granules. J Thermal Anal Calorim. 2016;123(3):2129–37.CrossRefGoogle Scholar
  20. 20.
    Siqueira GLA, Hornung PS, Silveira AC, Lazzarotto SRS, Cordoba LP, Schnitzler E, Lazzarotto M. Impact of treatment with HCL/alcoholic in the modification of corn starch. J Thermal Anal Calorim. 2017;129(3):1705–13.CrossRefGoogle Scholar
  21. 21.
    Kubiaki FT, Figueroa AM, Oliveira CS, Demiate IM, Schnitzler E, Lacerda LG. Effect of acid–alcoholic treatment on the thermal, structural and pasting characteristics of European chestnut (Castanea sativa, Mill) starch. J Thermal Anal Calorim. 2018;131(1):587–94.CrossRefGoogle Scholar
  22. 22.
    Gomes DS, Cordoba LP, Rosa LS, Spier MR, Schnitzler E, Waszczynskyj N. Thermal, pasting properties and morphological characterization of pea starch (Pisum sativum L.), rice starch (Oryza sativa) and arracacha starch (Arracacia xanthorrhiza) blends, established by simplex-centroid design. Thermochim Acta. 2018;662:90–9.CrossRefGoogle Scholar
  23. 23.
    Daudt RM, Külkamp-Guerreiro IC, Cladera-Olivera F, Thys RCS, Marczak LDF. Determination of properties of pinhão starch: analysis of its applicability as pharmaceutical excipient. Ind Crops Prod. 2014;52:420–9.CrossRefGoogle Scholar
  24. 24.
    Segundo C, Román L, Gómez M, Martínez MM. Mechanically fractionated flour isolated from green bananas (M. cavendishii var. nanica) as a tool to increase the dietary fiber and phytochemical bioactivity of layer and sponge cakes. Food Chem. 2017;219:240–8.CrossRefGoogle Scholar
  25. 25.
    Liao HJ, Hung CC. Chemical composition and in vitro starch digestibility of green banana (cv. Giant Cavendish) flour and its derived autoclaved/debranched powder. LWT-Food. Sci Technol. 2015;64(2):639–44.Google Scholar
  26. 26.
    Bezerra CV, Amante ER, Oliveira DC, Rodrigues AM, Silva LHM. Green banana (Musa cavendishii) flour obtained in spouted bed–Effect of drying on physico-chemical, functional and morphological characteristics of the starch. Ind Crops Prod. 2013;41:241–9.CrossRefGoogle Scholar
  27. 27.
    Muñoz LA, Pedreschi F, Leiva A, Aguilera JM. Loss of birefringence and swelling behavior in native starch granules: microstructural and thermal properties. J Food Eng. 2015;152:65–71.CrossRefGoogle Scholar
  28. 28.
    Núñez-Santiago MC, Bello-Perez LA, Tecante A. Swelling-solubility characteristics, granule size distribution and rheological behavior of banana (Musa paradisiaca) starch. Carbohydr Polym. 2004;56(1):65–75.CrossRefGoogle Scholar
  29. 29.
    Waliszewski KN, Aparicio MA, Bello LA, Monroy JA. Changes of banana starch by chemical and physical modification. Carbohydr Polym. 2003;52(3):237–42.CrossRefGoogle Scholar
  30. 30.
    Lehmann U, Jacobasch G, Schmiedl D. Characterization of resistant starch type III from banana (Musa acuminata). J Agric Food Chem. 2002;50(18):5236–40.CrossRefGoogle Scholar
  31. 31.
    Barros Mesquita C, Leonel M, Franco CML, Leonel S, Garcia EL, Santos TPR. Characterization of banana starches obtained from cultivars grown in Brazil. Int J Biol Macromol. 2016;89:632–9.CrossRefGoogle Scholar
  32. 32.
    Qiao DL, Bao XY, Liu XX, Chen L, Zhang XQ, Chen P. Preparation of cassava starch-based superabsorbent polymer using a twin-roll mixer as reactor. Chinese J Polym Sci. 2014;32(10):1348–56.CrossRefGoogle Scholar
  33. 33.
    Pineda-Gómez P, Angel-Gil NC, Valencia-Muñoz C, Rosales-Rivera A, Rodríguez-García ME. Thermal degradation of starch sources: green banana, potato, cassava, and corn–kinetic study by non-isothermal procedures. Starch-Stärke. 2014;66(7–8):691–9.CrossRefGoogle Scholar
  34. 34.
    Gonzalez-Soto RA, Sanchez-Hernandez L, Solorza-Feria J, Nunez-Santiago C, Flores-Huicochea E, Bello-Perez LA. Resistant starch production from non-conventional starch sources by extrusion. Food Sci Technol Int. 2006;12(1):5–11.CrossRefGoogle Scholar
  35. 35.
    Faraj A, Vasanthan T, Hoover R. The effect of extrusion cooking on resistant starch formation in waxy and regular barley flours. Food Res Int. 2004;37(5):517–25.CrossRefGoogle Scholar
  36. 36.
    Pongjanta J, Utaipattanaceep A, Naivikul O, Piyachomkwan K. Effects of Preheated Treatments on Physicochemical Properties of Resistant Starch Type III from Pullulanase Hydrolysis of High Amylose Rice Starch. Am J Food Technol. 2009;4:79–89.CrossRefGoogle Scholar
  37. 37.
    Ratanakamnuan U, Aht-Ong D. Preparation and characterization of low-density polyethylene/banana starch films containing compatibilizer and photosensitizer. J Appl Polym Sci. 2006;100(4):2717–24.CrossRefGoogle Scholar
  38. 38.
    Sánchez-Rivera MM, Méndez-Montealvo G, Núñez-Santiago C, Rosa-Millan J, Wang YJ, Bello-Pérez LA. Physicochemical properties of banana starch oxidized under different conditions. Starch-Stärke. 2009;61(3–4):206–13.CrossRefGoogle Scholar
  39. 39.
    Alanís-López P, Pérez-González J, Rendón-Villalobos R, Jiménez-Pérez A, Solorza-Feria J. Extrusion and characterization of thermoplastic starch sheets from “Macho” banana. J Food Sci. 2011;76(6):E465–71.CrossRefGoogle Scholar
  40. 40.
    Bi Y, Zhang Y, Jiang H, Hong Y, Gu Z, Cheng L, Li Z, Li C. Molecular Structure and Digestibility of Banana Flour and Starch. Food Hydrocoll. 2017;72:219–27.CrossRefGoogle Scholar
  41. 41.
    Aparicio-Saguilán A, Aguirre-Cruz A, Méndez-Montealvo G, Rodriguez-Ambriz SL, Garcia-Suarez FJ, Páramo-Calderón DE, Bello-Pérez LA. The effect of the structure of native banana starch from two varieties on its acid hydrolysis. LWT-Food Sci Technol. 2014;58(2):381–6.CrossRefGoogle Scholar
  42. 42.
    Carmona-Garcia R, Sanchez-Rivera MM, Méndez-Montealvo G, Garza-Montoya B. Bello-Pérez LA Effect of the cross-linked reagent type on some morphological, physicochemical and functional characteristics of banana starch (Musa paradisiaca). Carbohydr Polym. 2009;76(1):117–22.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Federal University of Paraná - UFPRCuritibaBrazil
  2. 2.State University of Ponta Grossa - UEPGPonta GrossaBrazil

Personalised recommendations