Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1565–1574 | Cite as

Kinetic analysis of crystallization process in [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100−xCux (x = 0.1 at.%) BMG

Non-isothermal condition
  • Z. Jaafari
  • A. Seifoddini
  • S. HasaniEmail author
  • P. Rezaei-Shahreza
Article

Abstract

The present work demonstrates the results of crystallization kinetic of [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100−xCux (x = 0.1 at.%) amorphous metallic alloy during non-isothermal annealing done by differential thermal analysis at various heating rates of 10, 20, and 40 K min−1 up to 1473 K. The results showed that by increasing the crystallization temperature, some crystalline phases including α-Fe, γ-Fe, FeNi2P, and Fe3C were formed. In addition, the volume fraction of crystalline phases increased from 9.2 to 20.2%, confirming the presence of crystalline phases by FE-SEM results. To calculate the activation energy (Eα), which is approximately independent of “α” in a wide range, some isoconversional methods such as Starink and Friedman were used for various crystallization steps. Moreover, the invariant kinetic parameters including IKP method and fitting models were used to calculate the empirical kinetic triplets [E, A, and g(α)]. IKP and Fitting methods are in a good agreement with each other to determine the kinetic mechanism at each crystallization stage. Therefore, to ensure the IKP results, the mechanism of four crystallization peaks was determined using a fitting method. Finally, it was found that the first, second, third, and fourth crystallization stages were controlled by A4, A4, A4, and P4 models, respectively.

Keywords

Amorphous alloys Crystallization Non-isothermal kinetics Nanocomposite Nanococrystals 

References

  1. 1.
    Inoue A, Wang X. Bulk amorphous FC20 (Fe–C–Si) alloys with small amounts of B and their crystallized structure and mechanical properties. Acta Mater. 2000;48:1383–95.CrossRefGoogle Scholar
  2. 2.
    Long ZL, Shao Y, Deng XH, Zhang ZC, Jiang Y, Zhang P, et al. Cr effects on magnetic and corrosion properties of Fe–Co–Si–B–Nb–Cr bulk glassy alloys with high glass-forming ability. Intermetallics. 2007;15:1453–8.CrossRefGoogle Scholar
  3. 3.
    Guo SF, Chan KC, Xie SH, Yu P, Huang YJ, Zhang HJ. Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater. J Non Cryst Solids. 2013;369:29–33.CrossRefGoogle Scholar
  4. 4.
    Pang SJ, Zhang T, Asami K, Inoue A. Synthesis of Fe–Cr–Mo–C–B–P bulk metallic glasses with high corrosion resistance. Acta Mater. 2002;50:489–97.CrossRefGoogle Scholar
  5. 5.
    Dan Z, Makino A, Hara N. Effects of P addition on corrosion properties of soft magnetic FeSiB alloys. Mater Trans. 2013;54:1691–6.CrossRefGoogle Scholar
  6. 6.
    Han Y, Kong FL, Han FF, Inoue A, Zhu SL, Shalaan E, et al. New Fe-based soft magnetic amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application. Intermetallics. 2016;76:18–25.CrossRefGoogle Scholar
  7. 7.
    Jung HY, Stoica M, Yi S, Kim DH, Eckert J. Electrical and magnetic properties of Fe-based bulk metallic glass with minor Co and Ni addition. J Magn Magn Mater. 2014;364:80–4.CrossRefGoogle Scholar
  8. 8.
    Shen BL, Inoue A. Soft magnetic properties of bulk nanocrystalline Fe–Co–B–Si–Nb–Cu alloy with high saturated magnetization of 1.35 T. J Mater Res. 2004;19:2549–52.CrossRefGoogle Scholar
  9. 9.
    Qi T, Li Y, Takeuchi A, Xie G, Miao H, Zhang W. Soft magnetic Fe25Co25Ni25(B, Si)25 high entropy bulk metallic glasses. Intermetallics. 2015;66:8–12.CrossRefGoogle Scholar
  10. 10.
    Lesz S, Kwapuliński P, Nabiałek M, Zackiewicz P, Hawelek L. Thermal stability, crystallization and magnetic properties of Fe–Co-based metallic glasses. J Therm Anal Calorim. 2016;125:1143–9.CrossRefGoogle Scholar
  11. 11.
    Ferenc J, Kowalczyk M, Cie G. Magnetostrictive iron-based bulk metallic glasses for force sensors. IEEE Trans Magn. 2014;50:4–7.CrossRefGoogle Scholar
  12. 12.
    Ramanan VRV. Metallic glasses in distribution transformer applications: an update. J Mater Eng. 1991;13:119–27.CrossRefGoogle Scholar
  13. 13.
    Kim SW, Namkung J, Kwon O. Manufactor and industrial application of Fe-based metallic glasses. Mater Sci Forum. 2012;709:1324–30.CrossRefGoogle Scholar
  14. 14.
    Makino A, Kubota T, Makabe M, Chang C, Inoue A. Fe-metalloid metallic glasses with high magnetic flux density and high glass-forming ability. Mater Sci Forum. 2007;565:1361–6.CrossRefGoogle Scholar
  15. 15.
    Wang G, Zhao DQ, Bai HY, Pan MX, Xia AL, Han BS, et al. Nanoscale periodic morphologies on the fracture surface of brittle metallic glasses. Phys Rev Lett. 2007;98:235501.CrossRefGoogle Scholar
  16. 16.
    Wu Y, Li HX, Jiao ZB, Gao JE, Lu ZP. Size effects on the compressive deformation behaviour of a brittle Fe-based bulk metallic glass. Philos Mag Lett. 2010;90:403–12.CrossRefGoogle Scholar
  17. 17.
    Lewandowski JJ, Wang WH, Greer AL. Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett. 2005;85:77–87.CrossRefGoogle Scholar
  18. 18.
    Rezaei-Shahreza P, Seifoddini A, Hasani S. Microstructural and phase evolutions: their dependent mechanical and magnetic properties in a Fe-based amorphous alloy during annealing process. J Alloys Compd. 2017;738:197–205.CrossRefGoogle Scholar
  19. 19.
    Hofmann DC. Bulk metallic glasses and their composites: a brief history of diverging fields. J Mater. 2013;2013:1–8.CrossRefGoogle Scholar
  20. 20.
    Zhang T, Liu F, Pang S, Li R. Ductile Fe-based bulk metallic glass with good soft-magnetic properties. Mater Trans. 2007;48:1157–60.CrossRefGoogle Scholar
  21. 21.
    Guo SF, Qiu JL, Yu P, Xie SH, Chen W. Fe-based bulk metallic glasses: brittle or ductile? Appl Phys Lett. 2014;105:161901.CrossRefGoogle Scholar
  22. 22.
    Gu XJ, Poon SJ, Shiflet GJ. Mechanical properties of iron-based bulk metallic glasses. J Mater Res. 2007;22:344–51.CrossRefGoogle Scholar
  23. 23.
    Yang W, Liu H, Zhao Y, Inoue A, Jiang K, Huo J, et al. Mechanical properties and structural features of novel Fe-based bulk metallic glasses with unprecedented plasticity. Sci Rep. 2014;4:6233.CrossRefGoogle Scholar
  24. 24.
    Li X, Kato H, Yubuta K, Makino A, Inoue A. Effect of Cu on nanocrystallization and plastic properties of FeSiBPCu bulk metallic glasses. Mater Sci Eng A. 2010;527:2598–602.CrossRefGoogle Scholar
  25. 25.
    Naitoh Y, Bitoh T, Hatanai T, Makino A, Inoue A. Application of nanocrystalline soft magnetic Fe–M–B (M = Zr, Nb) alloys to choke coils. J Appl Phys. 1998;83:6332–4.CrossRefGoogle Scholar
  26. 26.
    Yang X, Ma X, Li Q, Guo S. The effect of Mo on the glass forming ability, mechanical and magnetic properties of FePC ternary bulk metallic glasses. J Alloys Compd. 2013;554:446–9.CrossRefGoogle Scholar
  27. 27.
    Dou L, Liu H, Hou L, Xue L, Yang W, Zhao Y, et al. Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses. J Magn Magn Mater. 2014;358–359:23–6.CrossRefGoogle Scholar
  28. 28.
    Bitoh T, Shibata D. Improvement of soft magnetic properties of [(Fe0.5Co0.5)0.75B0.20Si0.05]96Nb4 bulk metallic glass by B2O3 flux melting. J Appl Phys. 2008;103:07E702.CrossRefGoogle Scholar
  29. 29.
    Stoica M, Roth S, Eckert J, Schultz L, Baró MD. Bulk amorphous FeCrMoGaPCB: preparation and magnetic properties. J Magn Magn Mater. 2005;290–291:1480–2.CrossRefGoogle Scholar
  30. 30.
    Wang J, Li R, Hua N, Huang L, Zhang T. Ternary Fe–P–C bulk metallic glass with good soft-magnetic and mechanical properties. Scr Mater. 2011;65:536–9.CrossRefGoogle Scholar
  31. 31.
    Zhang S, Sun D, Fu Y, Du H. Recent advances of superhard nanocomposite coatings: a review. Surf Coat Technol. 2003;167:113–9.CrossRefGoogle Scholar
  32. 32.
    Joraid AA, El-oyoun MA, Alamri SN. Nonisothermal crystallization kinetics of amorphous Te51.3As45.7Cu3. Thermochim Acta. 2008;470:98–104.CrossRefGoogle Scholar
  33. 33.
    Liavitskaya T, Vyazovkin S. Kinetics of thermal polymerization can be studied during continuous cooling. Macromol Rapid Commun. 2017;39:1700624.CrossRefGoogle Scholar
  34. 34.
    Ke HB, Xu HY, Huang HG, Liu TW, Zhang P, Wu M, et al. Non-isothermal crystallization behavior of U-based amorphous alloy. J Alloys Compd. 2017;691:436–41.CrossRefGoogle Scholar
  35. 35.
    Stanford VL, Vyazovkin S. Thermal decomposition kinetics of malonic acid in the condensed phase. Ind Eng Chem Res. 2017;56:7964–70.CrossRefGoogle Scholar
  36. 36.
    Rezaei-Shahreza P, Seifoddini A, Hasani S. Non-isothermal kinetic analysis of nano-crystallization process in (Fe41Co7Cr15Mo14Y2C15)94B6 amorphous alloy. Thermochim Acta. 2017;652:119–25.CrossRefGoogle Scholar
  37. 37.
    Wang X, Zeng M, Nollmann N, Wilde G, Wang J, Tang C. Thermal stability and non-isothermal crystallization kinetics of Pd82Si18 amorphous ribbon. AIP Adv. 2017;7:065206.CrossRefGoogle Scholar
  38. 38.
    Seiffodini A, Zaremehrjardi S. Effects of heat treatment on crystallization behavior, microstructure and the resulting microhardness of a (Fe0.9Ni0.1)77Mo5P9C7.5B1.5 bulk metallic glass composite. J Non Cryst Solids. 2016;432:313–8.CrossRefGoogle Scholar
  39. 39.
    Askari-paykani M, Ahmadabadi MN, Seiffodini A. The effect of liquid phase separation on the Vickers microindentation shear bands evolution in a Fe-based bulk metallic glass. Mater Sci Eng A. 2013;585:363–70.CrossRefGoogle Scholar
  40. 40.
    Starink MJ. Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J Mater Sci. 2006;42:483–9.CrossRefGoogle Scholar
  41. 41.
    Starink M. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.CrossRefGoogle Scholar
  42. 42.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 2007;6:183–95.CrossRefGoogle Scholar
  43. 43.
    Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–93.CrossRefGoogle Scholar
  44. 44.
    Hasani S, Shamanian M, Shafyei A, Behjati P, Szpunar JAA. Non-isothermal kinetic analysis on the phase transformations of Fe–Co–V alloy. Thermochim Acta. 2014;596:89–97.CrossRefGoogle Scholar
  45. 45.
    Rezaei-Shahreza P, Seifoddini A, Hasani S. Thermal stability and crystallization process in a Fe-based bulk amorphous alloy: the kinetic analysis. J Non Cryst Solids. 2017;471:286–94.CrossRefGoogle Scholar
  46. 46.
    Hasani S, Panjepour M, Shamanian M. Non-isothermal kinetic analysis of oxidation of pure aluminum powder particles. Oxid Met. 2013;81:299–313.CrossRefGoogle Scholar
  47. 47.
    Ledeti A, Olariu T, Caunii A, Vlase G, Circioban D, Baul B, et al. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim. 2018;131:1881–8.CrossRefGoogle Scholar
  48. 48.
    Prajapati R, Kasyap S, Patel AT, Pratap A. Non-isothermal crystallization kinetics of Zr52Cu18Ni14Al10Ti6 metallic glass. J Therm Anal Calorim. 2016;124:21–33.CrossRefGoogle Scholar
  49. 49.
    Uzun N, Colak AT, Emen FM, Cilgı GK. The thermal and detailed kinetic analysis of dipicolinate complexes. J Therm Anal Calorim. 2016;124:1735–44.CrossRefGoogle Scholar
  50. 50.
    Campostrini R, Mahmoud A, Leoni M, Scardi P. Activation energy in the thermal decomposition of MgH2 powders by coupled TG–MS measurements. J Therm Anal Calorim. 2014;116:225–40.CrossRefGoogle Scholar
  51. 51.
    Criado JM. The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal dehydrochlorination of PVC from non-isothermal data. Polym Degrad Stab. 2004;84:311–20.CrossRefGoogle Scholar
  52. 52.
    Singh A, Sharma TC, Kishore P. Thermal degradation kinetics and reaction models of 1,3,5-triamino-2,4,6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices. J Therm Anal Calorim. 2017;129:1403–14.CrossRefGoogle Scholar
  53. 53.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.CrossRefGoogle Scholar
  54. 54.
    Aghili S, Panjepour M, Meratian M. Kinetic analysis of formation of boron trioxide from thermal decomposition of boric acid under non-isothermal conditions. J Therm Anal Calorim. 2018;131:2443–55.CrossRefGoogle Scholar
  55. 55.
    Gorbachev VM, Lad KN, Savalia RT, Pratap A, Dey GK, Banerjee S. A solution of the exponential integral in the non-isothermal kinetics for linear heating. J Therm Anal. 1975;8:349–50.CrossRefGoogle Scholar
  56. 56.
    Hasani S, Panjepour M, Shamanian M. Effect of atmosphere and heating rate on mechanism of MoSi2 formation during self-propagating high-temperature synthesis. J Therm Anal Calorim. 2012;107:1073–81.CrossRefGoogle Scholar
  57. 57.
    Souri D, Shahmoradi Y. Calorimetric analysis of non-crystalline TeO2–V2O5–Sb2O3. Determination of crystallization activation energy, Avrami index and stability parameter. J Therm Anal Calorim. 2017;129:601–7.CrossRefGoogle Scholar
  58. 58.
    Hasani S, Panjepour M, Shamanian M. A study of the effect of aluminum on MoSi2 formation by self-propagation high-temperature synthesis. J Alloys Compd. 2010;502:80–6.CrossRefGoogle Scholar
  59. 59.
    Gong P, Yao K, Zhao S. Cu-alloying effect on crystallization kinetics of Ti41Zr25Be28Fe6 bulk metallic glass. J Therm Anal Calorim. 2015;121:697–704.CrossRefGoogle Scholar
  60. 60.
    Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Z. Jaafari
    • 1
  • A. Seifoddini
    • 1
  • S. Hasani
    • 1
    Email author
  • P. Rezaei-Shahreza
    • 1
  1. 1.Department of Mining and Metallurgical EngineeringYazd UniversityYazdIran

Personalised recommendations