Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1883–1891 | Cite as

Microcalorimetry combined with chemometics for antibacterial evaluation of Sophora alopecuroides on Staphylococcus aureus

  • Zhi-jie Ma
  • Cong-en Zhang
  • Rui-lin Wang
  • Qing-ce Zang
  • Xiao-hong Yu
  • Jia-bo Wang
  • Cheng-zhong Sun
  • Kui-jun ZhaoEmail author
  • Shi-biao PuEmail author
  • Xiao-he XiaoEmail author
Article
  • 67 Downloads

Abstract

This study aimed to evaluate the antibacterial activities of Sophora alopecuroides from various production regions of China on Staphylococcus aureus by microcalorimetry and chemometics. From the heat-flow power–time curves of S. aureus growth affected by the extracts of S. alopecuroides, some vital thermokinetic parameters, such as the growth rate constant (k), the maximum heat-production rate (Pm), the appearance time (tm) and the total heat-production (Q), were obtained and were analyzed by principal component analysis and hierarchical cluster analysis. The results showed that all the S. alopecuroides samples expressed strong antibacterial activities to S. aureus, but the activities varied evidently on their production regions. The samples from Xinjiang (northwest region of China) showed the strongest antibacterial activities with inhibitory ratio (I) of 81.3%, while those from Inner Mongolia (North region of China) gave the contrast results with I of 9.2%. The findings indicated that the anti-S. aureus activities of S. alopecuroides had close relationship with the production regions. This study has provided a combined model of microcalorimetry and chemometrics to evaluate the antibacterial activities of medicinal herbs on bacteria.

Keywords

Microcalorimetry Sophora alopecuroides Staphylococcus aureus Antibacterial evaluation Chemometics 

Notes

Acknowledgments

The financial support of the National Science Foundation of China (Nos. 3097394, 81073043 and 81173571), the National Key Technology R&D Program (Nos. 2012BAI29B02 and 2012ZX10005010-002-002) and the National Industry Program of China (Nos. 200807020 and 201207002) is gratefully acknowledged.

Authors Contributions

ZM, CZ and RW performed the investigation, analyzed the data and wrote the paper; JW, KZ and XX designed the study and amended the paper; QZ, XY and CS helped in execution of research; JW, KZ, XX and all the other authors read, improved and approved the manuscript.

References

  1. 1.
    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61.CrossRefGoogle Scholar
  2. 2.
    Rubin MA, Samore MH, Harris AD. The importance of contact precautions for endemic methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. JAMA. 2018;319(9):863–4.CrossRefGoogle Scholar
  3. 3.
    Hodille E, Rose W, Diep BA, Goutelle S, Lina G, Dumitrescu O. The role of antibiotics in modulating virulence in Staphylococcus aureus. Clin Microbiol Rev. 2017;30(4):887–917.CrossRefGoogle Scholar
  4. 4.
    Vuong C, Yeh AJ, Cheung GY, Otto M. Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opin Investig Drugs. 2016;25(1):73–93.CrossRefGoogle Scholar
  5. 5.
    Li X, Guan C, He Y, Wang Y, Liu X, Zhou X. Effects of total alkaloids of Sophora alopecuroides on biofilm formation in Staphylococcus epidermidis. Biomed Res Int. 2016.  https://doi.org/10.1155/2016/4020715.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pourahmad JR, Mohammadi P. The effect of total alkaloid extract of local Sophora alopecuroides on MIC and intracellular accumulation of ciprofloxacin, and acrA expression in ciprofloxacin high resistance Escherichia coli clones. J Glob Antimicrob Resist. 2018;12:55–60.CrossRefGoogle Scholar
  7. 7.
    Guo C, Yang L, Wan CX, Xia YZ, Zhang C, Chen MH, et al. Anti-neuroinflammatory effect of Sophora flavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine. 2016;23(13):1629–37.CrossRefGoogle Scholar
  8. 8.
    Liang LP, Chen HL, Zhao SM, Chen WF, Song LJ, Zhao WC. Preparation of colon-specific and synchronous release pellet containing total alkaloids of Sophora alopecuroides. Chin Herb Med. 2016;8(1):44–52.CrossRefGoogle Scholar
  9. 9.
    Li JG, Yang XY, Huang W. Total alkaloids of Sophora alopecuroides inhibit growth and induce apoptosis in human cervical tumor hela cells in vitro. Pharmacogn Mag. 2016;12(Suppl 2):S253–6.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang YB, Zhang XL, Chen NH, Wu ZN, Ye WC, Li YL, et al. Four matrine-based alkaloids with antiviral activities against hbv from the seeds of Sophora alopecuroides. Org Lett. 2017;19(2):424–7.CrossRefGoogle Scholar
  11. 11.
    Sang X, Wang R, Han Y, Zhang C, Shen H, Yang Z, et al. T cell-associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model. Acta Pharm Sin B. 2017;7(3):311–8.CrossRefGoogle Scholar
  12. 12.
    Yang C, Yang F, Ma H, Liu P. Distribution and morphological variation of germplasm resource of Sophora alopecuroides. China J Chin Mater Med. 2010;35(7):817–20.Google Scholar
  13. 13.
    Yu Y, Ding P, Chen D. Determination of quinolizidine alkaloids in Sophora medicinal plants by capillary electrophoresis. Anal Chim Acta. 2004;523(1):15–20.CrossRefGoogle Scholar
  14. 14.
    Gao HY, Li GY, Wang JH. Studies on the dynamic accumulations of Sophora alopecuroides L. Alkaloids in different harvest times and the appropriate harvest time. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879(15–16):1121–5.CrossRefGoogle Scholar
  15. 15.
    Duan L, Yan X, Han J. Effect of traditional Chinese medicine Sophora alopecuroides on Helicobacter pylori in vitro. China Trop Med. 2010;10(4):406–7.Google Scholar
  16. 16.
    Wan CX, Luo JG, Ren XP, Kong LY. Interconverting flavonostilbenes with antibacterial activity from Sophora alopecuroides. Phytochemistry. 2015;116:290–7.CrossRefGoogle Scholar
  17. 17.
    Huang YX, Wang G, Zhu JS, Zhang R, Zhang J. Traditional uses, phytochemistry, and pharmacological properties of Sophora alopecuroides L. Eur J Inflamm. 2016;14(2):128–32.CrossRefGoogle Scholar
  18. 18.
    Wang YP, Zhao W, Xue R, Zhou ZX, Liu F, Han YX, et al. Oxymatrine inhibits hepatitis B infection with an advantage of overcoming drug-resistance. Antivir Res. 2011;89(3):227–31.CrossRefGoogle Scholar
  19. 19.
    Wadsö I, Goldberg RN. Standards in isothermal microcalorimetry. Pure Appl Chem. 2001;73(10):1625–39.CrossRefGoogle Scholar
  20. 20.
    Chen C, Qu F, Wang J, Xia X, Wang J, Chen Z, et al. Antibacterial effect of different extracts from Wikstroemia indica on Escherichia coli based on microcalorimetry coupled with agar dilution method. J Therm Anal Calorim. 2016;123(2):1583–90.CrossRefGoogle Scholar
  21. 21.
    Xu J, Feng Y, Barros N, Zhong L, Chen R, Lin X. Exploring the potential of microcalorimetry to study soil microbial metabolic diversity. J Therm Anal Calorim. 2017;127(2):1–9.CrossRefGoogle Scholar
  22. 22.
    Vazquez C, Lago N, Mato MM, Esarte L, Legido JL. Study of the growth of Enterococcus faecalis, Escherichia coli and their mixtures by microcalorimetry. J Therm Anal Calorim. 2016;125(2):739–44.CrossRefGoogle Scholar
  23. 23.
    Guimarães GP, Santos RL, Brandão DO, Rui OM. Thermoanalytical characterization of herbal drugs from Poincianella pyramidalis in different particle sizes. J Therm Anal Calorim. 2017;131(1):1–10.Google Scholar
  24. 24.
    Chen LX, Hu DJ, Lam SC, Ge L, Wu D, Zhao J, et al. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2′-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay. J Chromatogr A. 2016;1428:134–42.CrossRefGoogle Scholar
  25. 25.
    Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev: Comput Stat. 2010;2(4):433–59.CrossRefGoogle Scholar
  26. 26.
    Albuquerque UP, Ramos MA, Melo JG. New strategies for drug discovery in tropical forests based on ethnobotanical and chemical ecological studies. J Ethnopharmacol. 2012;140(1):197–201.CrossRefGoogle Scholar
  27. 27.
    Alam F, Khan GN, Asad M. Psoralea corylifolia L: ethnobotanical, biological, and chemical aspects: a review. Phytother Res. 2018;32(4):597–615.CrossRefGoogle Scholar
  28. 28.
    Wang D, Huang L, Suo F. Ecological Suitability Evaluation for Ethnic Drug of Sophora alopecuroides L. Mod Chin Med. 2011;13(10):10–3.Google Scholar
  29. 29.
    Bruna EM, de Andrade AS. Edge effects on growth and biomass partitioning of an Amazonian understory herb (Heliconia acuminata; Heliconiaceae). Am J Bot. 2011;98(10):1727–34.CrossRefGoogle Scholar
  30. 30.
    Laurance WF, Nascimento HE, Laurance SG, Andrade A, Ewers RM, Harms KE, et al. Habitat fragmentation, variable edge effects, and the landscape-divergence hypothesis. PLoS One. 2007;2(10):e1017.  https://doi.org/10.1371/journal.pone.0001017.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Guo LP, Huang LQ, Yan H, Lv DM, Jiang YX. Habitat characteristics for the growth of Atractylodes lancea based on GIS. Zhongguo Zhong Yao Za Zhi. 2005;30(8):565–9.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Beijing Friendship HospitalCapital Medical UniversityBeijingChina
  2. 2.China Military Institute of Chinese MedicineBeijingChina
  3. 3.Chinese Academy of Surveying and MappingBeijingChina
  4. 4.Yunnan University of TCMKunmingChina

Personalised recommendations