Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2075–2088 | Cite as

Brazilian Amazon white yam (Dioscorea sp.) starch

Impact on functional properties due to chemical and physical modifications processes
  • Polyanna Silveira Hornung
  • Rafaela Cristina Turola Barbi
  • Gerson Lopes Teixeira
  • Suelen Ávila
  • Fernando Lucas de Abreu da Silva
  • Marcelo Lazzarotto
  • Joana Léa Meira Silveira
  • Trust Beta
  • Rosemary Hoffmann RibaniEmail author


The functional properties of starch granules define its application in food and non-food industries. Thus, in this study we investigated thermal, rheological, structural and colour properties of the native and modified starch of the Amazon Dioscorea sp. (white yam) tuber. The Dioscorea sp. native starch was modified by applying single, simultaneous and combined modification agents (sodium hypochlorite, ultraviolet (UV) radiation and microwave irradiation). The thermogravimetric curves showed three main mass losses and increased thermal stability for the triple (NaClO + UV + microwaves) modified sample. The UV-irradiated samples required less energy (enthalpy) to gelatinize as registered by the differential scanning calorimetry. Performing modification using microwaves resulted in starches of highly viscous pastes as recorded by the rapid visco analyser. All the starch gel samples presented thixotropic behaviour, in which pseudoplastic characteristics were adequately described by Ostwald–de Waele and Herschel–Bulkley models. Rheological evaluation also revealed that one-step modified starches could produce stronger gels than the native one. Lower degree of relative crystallinity and a wide range of granule sizes were demonstrated by X-ray diffraction patterns and scanning electron microscopy. The colour measurement revealed the brightening and browning action of NaClO and microwaves, respectively.


Tuber starch Starch oxidation Ultraviolet radiation Microwave irradiation TG/DTG DSC SEM 



The authors gratefully acknowledge the resources provided through the University of Manitoba, Universidade Federal do Paraná, EMBRAPA-Florestas, Nanoglicobiotec and Ministry of Science and Technology/CNPq, and CAPES-Brazil. J.L.M.S. is research member of the CNPq Foundation (Nos.: 476950/2013-9; 308296/2015-0).


  1. 1.
    He W, Wei C. Progress in C-type starches from different plant sources. Food Hydrocoll. 2017;73:162–75.CrossRefGoogle Scholar
  2. 2.
    Hornung PS, da Prado Cordoba L, da Silveira Lazzarotto SR, Schnitzler E, Lazzarotto M, Ribani RH. Brazilian Dioscoreaceas starches. J Therm Anal Calorim. 2017;127:1869–77.CrossRefGoogle Scholar
  3. 3.
    Hornung PS, Ávila S, Lazzarotto M, da Silveira Lazzarotto SR, de Andrade de Siqueira GL, de Schnitzler E, et al. Enhancement of the functional properties of Dioscoreaceas native starches: mixture as a green modification process. Thermochim Acta. 2017;649:31–40.CrossRefGoogle Scholar
  4. 4.
    Hornung PS, de Oliveira CS, Lazzarotto M, da Silveira Lazzarotto SR, Schnitzler E. Investigation of the photo-oxidation of cassava starch granules. J Therm Anal Calorim. 2016;123:1–11.CrossRefGoogle Scholar
  5. 5.
    Hornung PS, Granza AG, de Oliveira CS, Lazzarotto M, Schnitzler E. Study of the Effects of ultraviolet light and sodium hypochlorite solutions on properties of cassava starch granules. Food Biophys. 2015;10:368–74.CrossRefGoogle Scholar
  6. 6.
    de Andrade de Siqueira GL, Hornung PS, da Silveira AC, da Silveira Lazzarotto SR, do Prado Cordoba L, Schnitzler E, et al. Impact of treatment with HCl/alcoholic in the modification of corn starch. J Therm Anal Calorim. 2017;129:1705–13.CrossRefGoogle Scholar
  7. 7.
    Tester RF, Karkalas J, Qi X. Starch - Composition, fine structure and architecture. J Cereal Sci. 2004;39:151–65.CrossRefGoogle Scholar
  8. 8.
    Tester RF, Morrison WR, Gidley MJ, Kirkland M, Karkalas J. Properties of damaged starch granules. III. Microscopy and particle size analysis of undamaged granules and remnants. J Cereal Sci. 1994;20(1):59–67.CrossRefGoogle Scholar
  9. 9.
    Dhital S, Shrestha AK, Hasjim J, Gidley MJ. Physicochemical and structural properties of maize and potato starches as a function of granule size. J Agric Food Chem. 2011;59:10151–61.CrossRefGoogle Scholar
  10. 10.
    Chung H-J, Liu Q, Lee L, Wei D. Relationship between the structure, physicochemical properties and in vitro digestibility of rice starches with different amylose contents. Food Hydrocoll. 2011;25:968–75.CrossRefGoogle Scholar
  11. 11.
    Gidley MJ. Quantification of the structural features of starch polysaccharides by nmr spectroscopy. Carbohydr Res. 1985;139:85–93.CrossRefGoogle Scholar
  12. 12.
    Cheetham NW, Tao L. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym. 1998;36:277–84.CrossRefGoogle Scholar
  13. 13.
    Cai J, Cai C, Man J, Zhou W, Wei C. Structural and functional properties of C-type starches. Carbohydr Polym. 2014;101:289–300.CrossRefGoogle Scholar
  14. 14.
    Andres C, AdeOluwa OO, Bhullar GS. Yam (Dioscorea spp.). In: Thomas B, Murray BG, Murphy DJ, editors. Encyclopedia of applied plant science. 2nd ed. New York: Academic Press; 2016. p. 435–41.Google Scholar
  15. 15.
    Asiedu R, Sartie A. Crops that feed the World 1. Yams. Food Secur. 2010;2:305–15.CrossRefGoogle Scholar
  16. 16.
    Mendes L do N, Silva JA, Favero LA. Panorama da produção e comercialização do inhame no mundo e no Brasil e sua importância para o mercado pernambucano: uma análise das cinco forças competitivas. CONVIBRA. 2013;3:1–12.Google Scholar
  17. 17.
    Nascimento WF, Siqueira MVBM, Ferreira AB, Ming LC, Peroni N, Veasey EA. Distribution, management and diversity of the endangered Amerindian yam (Dioscorea trifida L.). Braz. J. Biol. 2015;75:104–13.CrossRefGoogle Scholar
  18. 18.
    Okunlola A, Odeku OA. Evaluation of starches obtained from four Dioscorea species as binding agent in chloroquine phosphate tablet formulations. Saudi Pharm J King Saud Univ. 2011;19:95–105.CrossRefGoogle Scholar
  19. 19.
    Riley CK, Adebayo SA, Wheatley AO, Asemota HN. Surface properties of yam (Dioscorea sp.) starch powders and potential for use as binders and disintegrants in drug formulations. Powder Technol. 2008;185:280–5.CrossRefGoogle Scholar
  20. 20.
    Garrido LH, Schnitzler E, Zortéa MEB, de Souza Rocha T, Demiate IM. Physicochemical properties of cassava starch oxidized by sodium hypochlorite. J Food Sci Technol. 2014;51:2640–7.CrossRefGoogle Scholar
  21. 21.
    Vanier NL, El Halal SLM, Dias ARG, da Rosa Zavareze E. Molecular structure, functionality and applications of oxidized starches: a review. Food Chem. 2017;221:1546–59.CrossRefGoogle Scholar
  22. 22.
    Lee JS, Kumar RN, Rozman HD, Azemi BMN. Pasting, swelling and solubility properties of UV initiated starch-graft-poly(AA). Food Chem. 2005;91:203–11.CrossRefGoogle Scholar
  23. 23.
    Lewicka K, Siemion PB, Kurcok P. Chemical modifications of starch: microwave effect. Int J Polym Sci. 2015;2015:1–10.CrossRefGoogle Scholar
  24. 24.
    Deka D, Sit N. Dual modification of taro starch by microwave and other heat moisture treatments. Int J Biol Macromol. 2016;92:416–22.CrossRefGoogle Scholar
  25. 25.
    Martínez C, Cuevas F. Evaluación de la calidad culinaria y molinera del arroz; guía de estudio para ser usada como complemento de la unidad audiotutorial sobre el mismo tema. Medina LM, editor. Cali: Centro Internacional de Agricultura Tropical, CIAT;1989.Google Scholar
  26. 26.
    Teixeira GL, Züge LCB, Silveira JLM, Scheer ADP, Ribani RH. The impact of polyoxyethylene sorbitan surfactants in the microstructure and rheological behaviour of emulsions made with melted fat from Cupuassu (Theobroma grandiflorum). J Surfactants Deterg. 2016;19:725–38.CrossRefGoogle Scholar
  27. 27.
    Barbi RCT, Teixeira GL, Hornung PS, Ávila S, Ribani RH. Eriobotrya japonica seed as a new source of starch: assessment of phenolic compounds, antioxidant activity, thermal, rheological and morphological properties. Food Hydrocoll. 2018;77:646–58.CrossRefGoogle Scholar
  28. 28.
    Robertson AR, The CIE. Color-difference formulae. Color Res Appl. 1976;1977(2):7–11.Google Scholar
  29. 29.
    Tuberoso CIG, Jerković I, Sarais G, Congiu F, Marijanović Z, Kuś PM. Color evaluation of seventeen European unifloral honey types by means of spectrophotometrically determined CIE L* Cab* Hab* chromaticity coordinates. Food Chem. 2014;145:284–91.CrossRefGoogle Scholar
  30. 30.
    Pérez E, Rolland-Sabaté A, Dufour D, Guzmán R, Tapia M, Raymundez M, et al. Isolated starches from yams (Dioscorea sp.) grown at the Venezuelan Amazons: structure and functional properties. Carbohydr Polym. 2013;98:650–8.CrossRefGoogle Scholar
  31. 31.
    Aggarwal P, Dollimore D. A thermal analysis investigation of partially hydrolyzed starch. Thermochim Acta. 1998;319:17–25.CrossRefGoogle Scholar
  32. 32.
    Vashisht D, Pandey A, Jayaram Kumar K. Physicochemical and release properties of carboxymethylated starches of Dioscorea from Jharkhand. Int J Biol Macromol. 2015;74:523–9.CrossRefGoogle Scholar
  33. 33.
    Lacerda LG, Almeida RR, Demiate IM, Carvalho Filho MAS, Vasconcelos EC, Woiciechowski AL, et al. Thermoanalytical and starch content evaluation of cassava bagasse as agro-industrial residue. Braz Arch Biol Technol. 2009;52:143–50.CrossRefGoogle Scholar
  34. 34.
    Lazzarotto SRS, Bet CD, Hornung PS, Lazzarotto M, Schnitzler E. Induced effects by oxidation with potassium permanganate on thermal, morphological, colorimetric and pasting properties of corn starch. Food Technol. 2017;6:197–210.Google Scholar
  35. 35.
    Bertolini AC, Mestres C, Colonna P, Raffi J. Free radical formation in UV- and gamma-irradiated cassava starch. Carbohydr Polym. 2001;44:269–71.CrossRefGoogle Scholar
  36. 36.
    Colman TAD, Demiate IM, Schnitzler E. The effect of microwave radiation on some thermal, rheological and structural properties of cassava starch. J Therm Anal Calorim. 2014;115:2245–52.CrossRefGoogle Scholar
  37. 37.
    Wongsagonsup R, Pujchakarn T, Jitrakbumrung S, Chaiwat W, Fuongfuchat A, Varavinit S, et al. Effect of cross-linking on physicochemical properties of tapioca starch and its application in soup product. Carbohydr Polym. 2014;101:656–65.CrossRefGoogle Scholar
  38. 38.
    Charles AL, Cato K, Huang TC, Chang YH, Ciou JY, Chang JS, et al. Functional properties of arrowroot starch in cassava and sweet potato composite starches. Food Hydrocoll. 2014;53:187–91.CrossRefGoogle Scholar
  39. 39.
    Alcázar-Alay SC, Meireles MAA. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol. 2015;35:215–36.CrossRefGoogle Scholar
  40. 40.
    Simková D, Lachman J, Hamouz K, Vokál B. Effect of cultivar, location and year on total starch, amylose, phosphorus content and starch grain size of high starch potato cultivars for food and industrial processing. Food Chem. 2013;141:3872–80.CrossRefGoogle Scholar
  41. 41.
    Bertolini AC, Mestres C, Colonna P. Rheological properties of acidified and UV-irradiated starches. Starch-Stärke. 2000;52:340–4.CrossRefGoogle Scholar
  42. 42.
    Fiedorowicz M, Tomasik P, You S, Lim S-T. Molecular distribution and pasting properties of UV-irradiated corn starches. Starch-Stärke. 1999;51:126–31.CrossRefGoogle Scholar
  43. 43.
    Albano KM, Franco CML, Telis VRN. Rheological behavior of Peruvian carrot starch gels as affected by temperature and concentration. Food Hydrocoll. 2014;40:30–43.CrossRefGoogle Scholar
  44. 44.
    Kong X, Kasapis S, Bao J, Corke H. Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch. Radiat Phys Chem. 2009;78:954–60.CrossRefGoogle Scholar
  45. 45.
    Rafiq SI, Jan K, Singh S, Saxena DC. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch. J Food Sci Technol. 2015;52:5651–60.CrossRefGoogle Scholar
  46. 46.
    Huang J, Zhao L, Man J, Wang J, Zhou W, Huai H, et al. Comparison of physicochemical properties of B-type nontraditional starches from different sources. Int J Biol Macromol. 2015;78:165–72.CrossRefGoogle Scholar
  47. 47.
    Jayakody L, Hoover R, Liu Q, Donner E. Studies on tuber starches. II. Molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydr Polym. 2007;69:148–63.CrossRefGoogle Scholar
  48. 48.
    Jayakody L, Hoover R, Liu Q, Donner E. Studies on tuber starches III. Impact of annealing on the molecular structure, composition and physicochemical properties of yam (Dioscorea sp.) starches grown in Sri Lanka. Carbohydr Polym. 2009;76:145–53.CrossRefGoogle Scholar
  49. 49.
    Pérez E, Gibert O, Rolland-Sabaté A, Jiménez Y, Sánchez T, Giraldo A, et al. Physicochemical, functional, and macromolecular properties of waxy yam starches discovered from “mapuey” (Dioscorea trifida) Genotypes in the Venezuelan Amazon. J Agric Food Chem. 2011;59:263–73.CrossRefGoogle Scholar
  50. 50.
    Fan D, Wang L, Chen W, Ma S, Ma W, Liu X, et al. Effect of microwave on lamellar parameters of rice starch through small-angle X-ray scattering. Food Hydrocoll. 2014;35:620–6.CrossRefGoogle Scholar
  51. 51.
    Falade KO, Christopher AS. Physical, functional, pasting and thermal properties of flours and starches of six Nigerian rice cultivars. Food Hydrocoll. 2015;44:478–90.CrossRefGoogle Scholar
  52. 52.
    Kuakpetoon D, Wang YJ. Characterization of different starches oxidized by hypochlorite. Starch-Staerke. 2001;53:211–8.CrossRefGoogle Scholar
  53. 53.
    Ibrahim GE, El-Ghorab AH, El-Massry KF, Osman F. Effect of microwave heating on flavour generation and food processing. In: Cao W, editor. The development and application of microwave heating. Rijeka: INTECH; 2012. p. 17–44.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Polyanna Silveira Hornung
    • 1
  • Rafaela Cristina Turola Barbi
    • 1
  • Gerson Lopes Teixeira
    • 1
  • Suelen Ávila
    • 1
  • Fernando Lucas de Abreu da Silva
    • 1
  • Marcelo Lazzarotto
    • 2
  • Joana Léa Meira Silveira
    • 4
  • Trust Beta
    • 3
  • Rosemary Hoffmann Ribani
    • 1
    Email author
  1. 1.Graduate Program of Food EngineeringFederal University of ParanáCuritibaBrazil
  2. 2.EMBRAPA-FlorestasColomboBrazil
  3. 3.Department of Food and Human Nutritional SciencesUniversity of ManitobaWinnipegCanada
  4. 4.Biochemistry and Molecular Biology DepartmentFederal University of ParanáCuritibaBrazil

Personalised recommendations