Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1599–1609 | Cite as

On the influence of fatty acid chain unsaturation on supramolecular gelation of aminocarbohydrate-based supra-amphiphiles

  • Douglas L. Cassimiro
  • Leonardo M. B. Ferreira
  • Ana Luiza R. de Souza
  • Mariana Fonseca
  • Suzy S. S. Kurokawa
  • Jovan D. Alonso
  • Victor Hugo V. Sarmento
  • Clovis Augusto RibeiroEmail author


Supramolecular gels are soft materials formed mainly by low molecular weight units held together by intermolecular interactions. Stabilizing these kinds of materials is quite a challenge due to the influence of multiple factors interfering with the integrity of the supramolecular structure. In our previous studies, we have shown that the aminocarbohydrate meglumine (MEG) interacts with organic acids by ion-pairing leading to the formation of MEG–carboxylate adducts. These adducts undergo supramolecular polymerization by heat treatment, but the macromolecular assembly was stable for a short period due to hydrogen bond (H-bond) breakup. Herein, we attempt to study the influence of hydrophobic building blocks on the formation of these compounds aiming to stabilize H-bonds to produce polymerizable supra-amphiphiles in water. Oleic acid and stearic acid are two analogous fatty acids differing only in the presence of unsaturation that were used in our studies. Results demonstrated that the presence of unsaturation hinders gelation in water by interfering with the self-assembly behavior of supra-amphiphiles. Thus, unsaturated supra-amphiphiles behave like traditional surfactants and gelify water at high concentrations (above 30% w/w). On the other hand, supramolecular gels with a polymer-like behavior could be produced with a saturated supra-amphiphile in water (above 4% w/w). The material was characterized by a lamellar arrangement that facilitates the alignment of H-bonds necessary to stabilize the self-assembled structure. These results have pivotal importance on the design of polymerizable supra-amphiphiles and demonstrate that the double bond of hydrophobic building blocks is an important design factor to be considered by scientists studying similar materials.


Supramolecular amphiphiles Meglumine Fatty acids Supramolecular gelation Molecular design factors Double bond 



This work was financially supported by the Grant #2013/08411-0, São Paulo Research Foundation (FAPESP). We acknowledge the LNLS (Campinas, SP, Brazil) staff for SAXS facilities.

Supplementary material

10973_2018_7333_MOESM1_ESM.pdf (637 kb)
Supplementary material 1 (pdf 637 KB)


  1. 1.
    Wojtecki RJ, Meador MA, Rowan SJ. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat Mater. 2011;10(1):14–27.CrossRefGoogle Scholar
  2. 2.
    Webber MJ, Appel EA, Meijer EW, Langer R. Supramolecular biomaterials. Nat Mater. 2015;15(1):13–26.CrossRefGoogle Scholar
  3. 3.
    Huang F, Scherman OA. Supramolecular polymers. Chem Soc Rev. 2012;41(18):5879–80.CrossRefGoogle Scholar
  4. 4.
    Sangeetha NM, Maitra U. Supramolecular polymers. Chem Soc Rev. 2005;34(10):821–36.CrossRefGoogle Scholar
  5. 5.
    Kang Y, Liu K, Zhang X. Supra-amphiphiles: a new bridge between colloidal science and supramolecular chemistry. Langmuir. 2014;30(21):5989–6001.CrossRefGoogle Scholar
  6. 6.
    Zhang S, Bellinger AM, Glettig DL, Barman R, Lee YL, Zhu J, Cleveland C, Montgomery VA, Gu L, Nash LD, Maitland DJ, Langer R, Traverso G. A pH-responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices. Nat Mater. 2015;14(10):1065–71.CrossRefGoogle Scholar
  7. 7.
    Dawn A, Shiraki T, Ichikawa H, Takada A, Takahashi Y, Tsuchiya Y, Lien LTN, Shinkai S. Stereochemistry-dependent, mechanoresponsive supramolecular host assemblies for fullerenes: a guest-induced enhancement of thixotropy. J Am Chem Soc. 2012;134(4):2161–71.CrossRefGoogle Scholar
  8. 8.
    Jones D, Steed JW. Gels with sense: supramolecular materials that respond to heat, light and sound. Chem Soc Rev. 2016;45(23):6546–96.CrossRefGoogle Scholar
  9. 9.
    Mollet BB, Comellas-Aragons M, Spiering AJH, Sntjens SHM, Meijer EW, Dankers PYW. A modular approach to easily processable supramolecular bilayered scaffolds with tailorable properties. J Mater Chem B. 2014;2(17):2483–93.CrossRefGoogle Scholar
  10. 10.
    Cassimiro DL, Ribeiro CA, Capela JMV, Crespi MS, Capela MV. Kinetic parameters for thermal decomposition of supramolecular polymers derived from flunixin-meglumine adducts. J Therm Anal Calorim. 2011;105(2):405–10.CrossRefGoogle Scholar
  11. 11.
    Ferreira LMB, Kurokawa SSS, Alonso JD, Cassimiro DL, Souza ALR, Fonseca M, Sarmento VHV, Regasini LO, Ribeiro CA. Structural and thermal behavior of meglumine-based supra-amphiphiles in bulk and assembled in water. Langmuir. 2016;32(45):11878–87.CrossRefGoogle Scholar
  12. 12.
    Cassimiro DL, Kobelnik M, Ribeiro CA, Crespi MS, Boralle N. Structural aspects, thermal behavior, and stability of a self-assembled supramolecular polymer derived from flunixin–meglumine supramolecular adducts. Thermochim Acta. 2012;529:59–67.CrossRefGoogle Scholar
  13. 13.
    Obert E, Bellot M, Bouteiller L, Andrioletti F, Lehen-Ferrenbach C, Boue F. Both water- and organo-soluble supramolecular polymer stabilized by hydrogen-bonding and hydrophobic interactions. J Am Chem Soc. 2007;129(50):15601–5.CrossRefGoogle Scholar
  14. 14.
    Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature. 2005;437(7059):640–7.CrossRefGoogle Scholar
  15. 15.
    Teixeira Neto E, Malta MM, Santos RG. Surface tension measurement by drop counting method: method description and experiments with etoxilated non-ionic surfactants. Quim Nova. 2009;32(1):223–7.CrossRefGoogle Scholar
  16. 16.
    Durairaj B, Blum FD. Micelle formation and terminal double bonds in sodium carboxylates. J Colloid Interface Sci. 1985;106(2):561–4.CrossRefGoogle Scholar
  17. 17.
    Edwards W, Smith DK. Enantioselective component selection in multicomponent supramolecular gels. J Am Chem Soc. 2014;136(3):1116–24.CrossRefGoogle Scholar
  18. 18.
    Edwards W, Smith DK. Dynamic evolving two-component supramolecular gels hierarchical control over component selection in complex mixtures. J Am Chem Soc. 2013;135(15):5911–20.CrossRefGoogle Scholar
  19. 19.
    Pal A, Basit H, Sen S, Aswal VK, Bhattacharya S. Structure and properties of two component hydrogels comprising lithocholic acid and organic amines. J Mater Chem. 2009;19(25):4325–34.CrossRefGoogle Scholar
  20. 20.
    Basit H, Pal A, Sen S, Bhattacharya S. Two-component hydrogels comprising fatty acids and amines: structure, properties, and application as a template for the synthesis of metal nanoparticles. Chem Eur J. 2008;14(21):6534–45.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Douglas L. Cassimiro
    • 3
  • Leonardo M. B. Ferreira
    • 2
  • Ana Luiza R. de Souza
    • 3
  • Mariana Fonseca
    • 3
  • Suzy S. S. Kurokawa
    • 3
  • Jovan D. Alonso
    • 3
  • Victor Hugo V. Sarmento
    • 1
  • Clovis Augusto Ribeiro
    • 3
    Email author
  1. 1.Department of ChemistryFederal University of Sergipe (UFS) AracajuBrazil
  2. 2.School of Pharmaceutical SciencesSão Paulo State University (UNESP) São PauloBrazil
  3. 3.Analytical Chemistry DepartmentSão Paulo State University IQ/UNESPAraraquaraBrazil

Personalised recommendations