Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1629–1636 | Cite as

Evaluation of physico-chemical properties and antimicrobial synergic effect of ceftazidime-modified chitosan

  • Luizangela Reis Osório
  • Andréia Bagliotti Meneguin
  • Hernane Barud da Silva
  • Humberto Medeiros Barreto
  • Josy Anteveli Osajima
  • Edson Cavalcanti da Silva FilhoEmail author
Article

Abstract

The high prevalence of infections caused by antibiotic-resistant bacteria has stimulated the development of new therapeutic strategies. Polymeric materials have aroused the interest of many researchers because of their large field of applications. This work aimed to evaluate the synergistic antimicrobial effect of chitosan in association with ceftazidime as well as possible chemical interactions from this combination by FTIR, XRD and TG/DTG curves. Through these analyses, it was possible to conclude that the proposed method was efficient to incorporate the drug with no changes in the fundamental structure of chitosan. In addition, the developed carrier was responsible for increasing the thermal and hydrolytic stability of the drug. The antibacterial activity of chitosan and ceftazidime-modified chitosan was evaluated against Staphylococcus aureus 25,923 and Escherichia coli 25,922 strains, revealing a possible time-dependent drug release.

Keywords

Chitosan Antimicrobial activity Ceftazidime Polymeric carrier 

Notes

Acknowledgements

The authors thank Interdisciplinary Laboratory for Advanced Materials-LIMAV of Federal University of Piauí (UFPI) to provide work research conditions, CAPES, CNPQ and FAPEPI for finantial support.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

References

  1. 1.
    Luo Z, Wu Q, Zhang M. The Synergistic antibacterial effects of water soluble n-succinyl-chitosan with ceftriaxone against Escherichia coli. Lett Drug Des Discov. 2012;9:848–52.CrossRefGoogle Scholar
  2. 2.
    Nisar M, Ahmad MUD, Mushtaq MH, Shehzad W, Hussain A, Muhammad J, Nagaraja KV, Goyal SM. Prevalence and antimicrobial resistance patterns of Campylobacter spp. isolated from retail meat in Lahore, Pakistan. Food Control. 2017;80:327–32.CrossRefGoogle Scholar
  3. 3.
    Kadosaki LLI, Sousa SF, Borges JCM. Análise do uso e da resistência bacteriana aos antimicrobianos em nível hospitalar. Rev Bras Farm. 2012;93:128–35.Google Scholar
  4. 4.
    Mourya VK, Inamdar NN, Tiwari A. Carboxymethyl chitosan and its applications. Adv Mater Lett. 2010;1:11–33.CrossRefGoogle Scholar
  5. 5.
    Silva HSR, Santos KSCR, Ferreira EI. Quitosana: derivados hidrossolúveis, aplicações farmacêuticas e avanços. Quím Nova. 2006;29:776–85.CrossRefGoogle Scholar
  6. 6.
    Osorio LR, Lima IS, Barreto HM, Osajima JA, Da Silva Filho EC. Antibacterial activity of a chitosan derivative obtained in the absence of a solvente. Mater Sci Forum. 2016;869:869–73.CrossRefGoogle Scholar
  7. 7.
    Yalinca Z, Yilmaz E, Taneri B, Bullici FTA. A comparative study on antibacterial activities of chitosan based products and their combinations with gentamicin against S. epidermidis and E. coli. Polym Bull. 2013;70:3407–23.CrossRefGoogle Scholar
  8. 8.
    Goy RC, Morais STB, Assis OBG. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth. Rev Bras Farmacogn. 2016;26:122–7.CrossRefGoogle Scholar
  9. 9.
    Vinsová J, Vavríková E. Derivatives with antimicrobial, antitumour and antioxidant activities—a Review. Curr Pharm Design. 2011;17:3596–607.CrossRefGoogle Scholar
  10. 10.
    Aranaz I, Harris R, Heras A. Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem. 2010;14:308–30.CrossRefGoogle Scholar
  11. 11.
    Lal S, Arora S, Sharma C. Synthesis, thermal and antimicrobial studies of some Schiff bases of chitosan. J Therm Anal Calorim. 2016;124:909–16.CrossRefGoogle Scholar
  12. 12.
    Singh AV. Biopolymers in drug delivery: a review. Pharmacol online. 2011;1:666–74.Google Scholar
  13. 13.
    Salama HE, Saad GR, Saba MW. Synthesis, characterization and biological activity of Schiff bases based on chitosan and arylpyrazole moiety. Int J Biol Macromol. 2015;79:996–1003.CrossRefGoogle Scholar
  14. 14.
    Zhong Z, Aotegen B, Xu H, Zhao S. Structure and antimicrobial activities of benzoyl phenyl-thiosemicarbazone-chitosans. Int J Biol Macromol. 2012;50:1169–74.CrossRefGoogle Scholar
  15. 15.
    Orgaz B, Lobete MM, Puga CH, Jose CS. Effectiveness of chitosan against mature biofilms formed by food related bacteria. Int J Mol Sci. 2011;12:817–28.CrossRefGoogle Scholar
  16. 16.
    Costa EM, Silva S, Veiga M, Vicente S, Tavaria FK, Pintado ME. Investigation of chitosan’s antibacterial activity against vancomycin resistant microorganisms and their biofilms. Carbohydr Polym. 2017;15:369–76.CrossRefGoogle Scholar
  17. 17.
    Li XF, Feng XQ, Yang S. A mechanism of antibacterial activity of chitosan against Gram-negative bacteria. Chin J Polym Sci. 2010;31:148–53.Google Scholar
  18. 18.
    Raafat D, Sahl HG. Chitosan and its antimicrobial potential–A critical literature survey. Microb Biotechnol. 2009;2:186–201.CrossRefGoogle Scholar
  19. 19.
    Liu H, Du Y, Wang X, Sun L. Chitosan kills bacteria through cell membrane damage. Int J Food Microbiol. 2004;95:147–55.CrossRefGoogle Scholar
  20. 20.
    Ahmed AT, Ibrahim SI, Al-Saman A, Mahmoud A, Moussa SH. Production of fungal chitosan from date wastes and its application as a biopreservative for minced meat. Int J Biol Macromol. 2014;69:471–5.CrossRefGoogle Scholar
  21. 21.
    Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63.CrossRefGoogle Scholar
  22. 22.
    Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JG, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharm Sin. 2004;27:932–6.Google Scholar
  23. 23.
    Helander IM, Nurmiaho-Lassila EL, Ahvenainen R, Rhoades J, Roller S. Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. Int J Food Microbiol. 2001;71:235–44.CrossRefGoogle Scholar
  24. 24.
    Huang L, Dai T, Xuan Y, Tegos GP, Hamblin MR. Synergistic combination of chitosan acetate with nanoparticle silver as a topical antimicrobial: efficacy against bacterial burn infections. Antimicrob Agents Chemother. 2011;55:3432–8.CrossRefGoogle Scholar
  25. 25.
    Mushtaq S, Khan JA, Rabbani F, Latif U, Arfan M, Yameen MA. Biocompatible biodegradable polymeric antibacterial nanoparticles for enhancing the effects of a third-generation cephalosporin against resistant bacteria. J Med Microbiol. 2017;66:318–27.CrossRefGoogle Scholar
  26. 26.
    Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012;29:48–56.CrossRefGoogle Scholar
  27. 27.
    Chen LC, Chiang WD, Chen WC, Chen HH, Huang YW, Chen WJ, Lin SB. Influence of alanine uptake on Staphylococcus aureus surface charge and its susceptibility to two cationic antibacterial agents, nisin and low molecular weight chitosan. Food Chem. 2012;135:2397–403.CrossRefGoogle Scholar
  28. 28.
    Windholz M. The Merck Index—an encyclopedia of chemicals, drugs and biologicals. 10th ed. Rahway: Merck and Co; 1983.Google Scholar
  29. 29.
    Misiuk W. Investigation of inclusion complex of HP-γ-cyclodextrin with ceftazidime. J Mol Liq. 2016;224:387–92.CrossRefGoogle Scholar
  30. 30.
    Reiss A, Chifiriuc MC, Amzoiu E, Cioateră N, Dăbuleanu I, Rotaru P. New metal(II) complexes with ceftazidime Schiff base. J Therm Anal Calorim. 2018;131:2073–85.CrossRefGoogle Scholar
  31. 31.
    Bezerra RDS, Morais AIS, Osajima JA, Nunes LCC, da Silva Filho EC. Development of new phosphated cellulose for application as an efficient biomaterial for the incorporation/release of amitriptyline. Int J Biol Macromol. 2016;86:362–75.CrossRefGoogle Scholar
  32. 32.
    Rahmi L, Julinawati S. Preparation of chitosan composite film reinforced with cellulose isolated from oil palm empty fruit bunch and application in cadmium ions removal from aqueous solutions. Carbohydr Polym. 2017;170:226–33.CrossRefGoogle Scholar
  33. 33.
    Jamil B, Habib H, Abbasi S, Nasir H, Rahman A, Rehman A, Bokhari H, Imran M. Cefazolin loaded chitosan nanoparticles to cure multi drug resistant Gram-negative pathogens. Carbohydr Polym. 2016;136:682–91.CrossRefGoogle Scholar
  34. 34.
    Moreno AH, Salgado HRN. Development and validation of the quantitative analysis of ceftazidime in powder for injection by infrared spectroscopy. Phys Chem. 2012;2:6–11.CrossRefGoogle Scholar
  35. 35.
    Dafale NA, Semwal UP, Agarwal PK, Sharma P, Singh GN. Quantification of ceftriaxone sodium in pharmaceutical preparations by a new validated microbiological bioassay. Anal Methods. 2012;4:2490–8.CrossRefGoogle Scholar
  36. 36.
    Kumirska J, Weinhold MX, Thöming J, Stepnowski P. Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of n-acetylation. Polymers. 2011;3:1875–901.CrossRefGoogle Scholar
  37. 37.
    Huang B, Liu M, Zhou C. Chitosan composite hydrogels reinforced with natural clay nanotubes. Carbohydr Polym. 2017;175:689–98.CrossRefGoogle Scholar
  38. 38.
    Abounassif MA, Mian NAA, Mian MS. Analytical profile of ceftazidime. In: Florey K, editor. Analytical profiles of drug substances. San Diego: Academic Press; 1990. p. 95–121.Google Scholar
  39. 39.
    Zawadzki J, Kaczmrek H. Thermal treatment of chitosan in various conditions. Carbohydr Polym. 2010;80:394–400.CrossRefGoogle Scholar
  40. 40.
    López FA, Mercê ALR, Alguacil FJ, López-Delgado A. A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim. 2008;91:633–9.CrossRefGoogle Scholar
  41. 41.
    Kowalonek J. Studies of chitosan/pectin complexes exposed to UV radiation. Int J Biol Macromol. 2017;103:515–52.CrossRefGoogle Scholar
  42. 42.
    Lal S, Arora S, Sharma C. Synthesis, thermal and antimicrobial studies of some Schiff bases of chitosan. J Therm Anal Calorim. 2016;124:909–16.CrossRefGoogle Scholar
  43. 43.
    Tavaria FK, Costa EM, Pina-Vaz I, Carvalho MF, Pintado MM. Chitosan as a dental biomaterial: state of the art. Rev Bras Eng Biomed. 2013;29:110–20.CrossRefGoogle Scholar
  44. 44.
    Pinto NCC, Camposa LM, Evangelista ACS, Lemos ASO, Silva TP, Melo RCN, Lourenço CC, Salvador MJ, Apolônio ACM, Scio E, Fabri RL. Antimicrobial Annona muricata L. (soursop) extract targets the cell membranes of Gram-positive and Gram-negative bacteria. Ind Crops Prod. 2017;107:332–40.CrossRefGoogle Scholar
  45. 45.
    Hayes MV, Orr DC. Mode of action of ceftazidime: affinity for the penicillin-binding proteins of Escherichia coli K12, Pseudomonas aeruginosa and Staphylococcus aureus. J Antimicrob Chemother. 1983;12:119–26.CrossRefGoogle Scholar
  46. 46.
    Li Z, Yang F, Yang R. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. Int J Biol Macromol. 2015;75:378–87.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Luizangela Reis Osório
    • 1
  • Andréia Bagliotti Meneguin
    • 1
    • 2
  • Hernane Barud da Silva
    • 1
  • Humberto Medeiros Barreto
    • 1
  • Josy Anteveli Osajima
    • 1
  • Edson Cavalcanti da Silva Filho
    • 1
    Email author
  1. 1.Interdisciplinary Laboratory for Advanced Materials-LIMAVUFPITeresinaBrazil
  2. 2.Laboratory of Polymers and Biomaterials (BioPolMat)UNIARAAraraquaraBrazil

Personalised recommendations