Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2097–2105 | Cite as

Thermal behavior and decomposition kinetic studies of biomedical UHMWPE/vitamin C compounds

  • V. C. Souza
  • E. B. C. Santos
  • A. V. Mendonça
  • L. B. Silva
Article
  • 45 Downloads

Abstract

In this paper, the effects of adding vitamin C to biomedical ultra-high molecular weight polyethylene (B-UHMWPE) on thermal behavior and thermal degradation kinetics are investigated. The kinetic studies were conducted using Ozawa–Flynn–Wall (OFW), corresponding to pre-exponential factor (A) and activation energy (Ea). Compounds with 1.0 and 2.0% mass vitamin C exhibited a lower decomposition rate. Activation energy results from the OFW and Kissinger methods were close to each other and showed a dependence on the degree of conversion (α), with Ea being an increasing function of conversion degree to B-UHMWPE and a decreasing function for the compounds. Finally, the pre-exponential factor increases with the addition of vitamin C, favoring its interaction with the free radicals originated from the thermal degradation of B-UHMWPE, also suggesting a reduction in its decomposition rate.

Keywords

Biomedical UHMWPE Vitamin C Thermal stability Kinetic methods Activation energy 

Notes

Acknowledgements

The authors are grateful to Brazilian Coordination for the Improvement in Higher-Level Personnel for scholarships. Moreover, characterizations provided by the Fast Solidification Laboratory of the Federal University of Paraiba and Northeast Center for Strategic Technologies (CETENE) are acknowledged as well.

References

  1. 1.
    Bracco P, Oral E. Vitamin E-stabilized UHMWPE for total joint implants: a review. Clin Orthop Relat Res. 2011;469:2286–93.CrossRefGoogle Scholar
  2. 2.
    Oral E, Greenbaum ES, Malhi AS, Harris WH, Muratoglu OK. Characterization of irradiated blends of alpha-tocopherol and UHMWPE. Biomaterials. 2005;26:6657–63.CrossRefGoogle Scholar
  3. 3.
    Fu J, Doshi BN, Oral E, Muratoglu OK. High temperature melted, radiation cross-linked, vitamin E stabilized oxidation resistant UHMWPE with low wear and high impact strength. Polymer. 2013;54:199–209.CrossRefGoogle Scholar
  4. 4.
    Kurtz SM, Muratoglu OK, Evans M, Edidin AA. Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials. 1999;20:1659–88.CrossRefGoogle Scholar
  5. 5.
    Paxton EW, Inacio M, Slipchenko T, Fithian DC. The Kaiser Permanente national total joint replacement registry. Perm J. 2008;12:12–6.CrossRefGoogle Scholar
  6. 6.
    Oral E, Wannomae KK, Hawkins N, Harris WH, Muratoglu OK. Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear. Biomaterials. 2004;25:515–22.CrossRefGoogle Scholar
  7. 7.
    Kurtz SM, Dumbleton J, Siskey RS, Wang A, Manley M. Trace concentrations of vitamin E protect radiation crosslinked UHMWPE from oxidative degradation. J Biomed Mater Res A. 2009;90:549–63.CrossRefGoogle Scholar
  8. 8.
    Lerf R, Zurbrugg D, Delfosse D. Use of vitamin E to protect cross-linked UHMWPE from oxidation. Biomaterials. 2010;31:3643–8.CrossRefGoogle Scholar
  9. 9.
    Turner A, Okubo Y, Teramura S, Niwa Y, Ibaraki K, Kawasaki T, Hamada D, Uetsuki KK, Tomita N. The antioxidant and non-antioxidant contributions of vitamin E in vitamin E blended UWMWPE for total kneep replacement. J Mech Behav Biomed. 2014;31:21–30.CrossRefGoogle Scholar
  10. 10.
    Costa L, Carpentieri I, Bracco P. Post electron-beam irradiation oxidation of orthopedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E. Polym Degrad Stab. 2009;94:1542–7.CrossRefGoogle Scholar
  11. 11.
    Bracco P, Brunella V, Zanetti M, Luda MP, Costa L. Stabilisation of ultra-high molecular weight polyethylene with vitamin E. Polym Degrad Stab. 2007;92:2155–62.CrossRefGoogle Scholar
  12. 12.
    Shen J, Gao G, Liu X, Fu J. Natural polyphenols enhance stability of crosslinked UHMWPE for joint implants. Clin Orthop Relat Res. 2015;473:760–6.CrossRefGoogle Scholar
  13. 13.
    Peltzer M, Wagner JR, Jiménez A. Thermal characterization of UHMWPE stabilized with natural antioxidants. J Therm Anal Calorim. 2007;87:493–7.CrossRefGoogle Scholar
  14. 14.
    Al-Malaika S, Ashley H, Issenhuth S. The antioxidant role of α-tocopherol in polymers. I. The nature of transformation products of α-tocopherol formed during melt processing of LDPE. J Polym Sci Polym Chem. 1994;32:3099–113.CrossRefGoogle Scholar
  15. 15.
    Al-Malaika S, Goodwin C, Issenhuth S, Burdick D. The antioxidant role of α-tocopherol in polymers II. Melt stabilising effect in polypropylene. Polym Degrad Stab. 1996;64:145–51.CrossRefGoogle Scholar
  16. 16.
    Litwinienko G, Dabrowska M. Thermogravimetric investigation of antioxidant activity of selected compounds in lipid oxidation. J Therm Anal Calorim. 2001;65:411–7.CrossRefGoogle Scholar
  17. 17.
    Al-Malaika S, Issenhuth S, Burdick D. The antioxidant role of vitamin E in polymers V. Separation of stereoisomers and characterisation of other oxidation products of dl-α-tocopherol formed in polyolefins during melt processing. Polym Degrad Stab. 2001;73:491–503.CrossRefGoogle Scholar
  18. 18.
    Kaya I, Dogan F, Gul M. A new schiff base epoxy oligomer resin: synthesis, characterization, and thermal decomposition kinetics. J Appl Polym Sci. 2011;121:3211–22.CrossRefGoogle Scholar
  19. 19.
    Thumsorn S, Yamada K, Yew WL, Hamada H. Thermal decomposition kinetic and flame retardancy of CaCO3 filled recycled polyethylene terephthalate/recycled polypropylene blend. J Appl Polym Sci. 2013;127:1245–56.CrossRefGoogle Scholar
  20. 20.
    Hazewindus M, Haenen GRMM, Weseler AR, Bast A. The anti-inflammatory effect of lycopene complements the antioxidant action of ascorbic acid and a-tocopherol. Food Chem. 2012;132:654–8.CrossRefGoogle Scholar
  21. 21.
    Ameta RK, Singh M. A thermodynamic in vitro antioxidant study of vitamins B (niacin and niacin amide) and C (ascorbic acid) with DPPH through UV spectrophotometric and physicochemical methods. J Mol Liq. 2014;195:40–6.CrossRefGoogle Scholar
  22. 22.
    Souza VC, Oliveira JE, Lima SJG, Silva LB. Influence of Vitamin C on morphological and thermal behaviour of biomedical UHMWPE. Macromol Symp. 2014;344:8–13.CrossRefGoogle Scholar
  23. 23.
    Pielichowski K, Njuguna J. Thermal degradation of polymeric materials. Shawbury: Rapra Technology Ltd; 2005.Google Scholar
  24. 24.
    Kim JY, Kim DK, Kim SH. Thermal decomposition behavior of poly(ethylene 2,6-naphthalate)/silica nanocomposites. Polym Compos. 2009;30:1779–87.CrossRefGoogle Scholar
  25. 25.
    Flynn J, Wall LA. A Quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Polym Lett. 1966;4:323–8.CrossRefGoogle Scholar
  26. 26.
    Ozawa T. A new method of analyzing thermogravimetric data. B Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S. Advanced isoconversional method. J Therm Anal Calorim. 1997;49:1493–9.CrossRefGoogle Scholar
  28. 28.
    Doyle CJ. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.CrossRefGoogle Scholar
  29. 29.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  30. 30.
    Chao M, Li W, Wang X. Thermal decomposition kinetics and anti-oxidation performance of commercial antioxidants. J Therm Anal Calorim. 2015;120:1921–8.CrossRefGoogle Scholar
  31. 31.
    Tang W, Li XG, Yan D. Thermal decomposition kinetics of thermotropic copolyesters made from trans-p-hydroxycinnamic acid and p-hydroxybenzoic acid. J Appl Polym Sci. 2004;91:445–54.CrossRefGoogle Scholar
  32. 32.
    Denq BL, Chiu WY, Lin KF. Kinetic model of thermal degradation of polymers for nonisothermal process. J Appl Polym Sci. 1997;66:1855–68.CrossRefGoogle Scholar
  33. 33.
    Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.CrossRefGoogle Scholar
  34. 34.
    Shih YF. Thermal degradation and kinetic analysis of biodegradable PBS/multiwalled carbon nanotube nanocomposites. J Polym Sci Polym Phys. 2009;47:1231–9.CrossRefGoogle Scholar
  35. 35.
    Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D. Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta. 2009;485:65–71.CrossRefGoogle Scholar
  36. 36.
    Jahan MS, Walter BM. Macroradical reaction in ultra-high molecular weight polyethylene in the presence of vitamin E. Radiat Phys Chem. 2011;80:281–5.CrossRefGoogle Scholar
  37. 37.
    Oral E, Rowell SL, Muratoglu OK. The effect of a-tocopherol on the oxidation and free radical decay in irradiated UHMWPE. Biomaterial. 2006;27:5580–7.CrossRefGoogle Scholar
  38. 38.
    Lee JY, Liao Y, Nagahata R, Horiuchi S. Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer. 2006;47:7970–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • V. C. Souza
    • 1
  • E. B. C. Santos
    • 1
  • A. V. Mendonça
    • 2
  • L. B. Silva
    • 1
  1. 1.Programa de Pós Graduação em Ciência e Engenharia de MateriaisUniversidade Federal da ParaíbaJoão PessoaBrazil
  2. 2.Programa de Pós Graduação em Engenharia Civil e AmbientalUniversidade Federal da ParaíbaJoão PessoaBrazil

Personalised recommendations