Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2115–2125 | Cite as

Crystallization kinetics of PCL and PCL–glass composites for additive manufacturing

  • Liliana Sofia Oliveira PiresEmail author
  • Maria Helena Figueira Vaz Fernandes
  • José Martinho Marques de Oliveira
Article
  • 154 Downloads

Abstract

The non-isothermal crystallization kinetics of polycaprolactone (PCL) and PCL–glass composites, used in fused filament fabrication (FFF), was investigated. Films of PCL and PCL reinforced with powders of a bioactive glass, from the CaO·P2O5·MgO·SiO2 system, were prepared by solvent casting process. Crystal structure of the samples was examined by X-ray diffraction (XRD), and thermal properties were assessed by differential scanning calorimetry (DSC), at different cooling rates (5, 10, 15 and 20 °C min−1). The DSC curves of non-isothermal crystallization showed a significant dependence of crystallinity (Xc) on the cooling rate. The relevant crystallization kinetic parameters were determined from DSC traces applying a combination of Avrami and Ozawa methods (Mo’s method), Jeziorny method and Friedman method. It was observed that the presence of inorganic particles within the polymeric matrix clearly influenced the composite crystallization. The addition of glass particles allowed a decrease in Xc and accelerated the PCL crystallization rate. The slower cooling rates tested proved to be suitable for the biofabrication of PCL–glass composites by FFF techniques.

Keywords

DSC Biomaterials Composites Crystallization kinetics Fused filament fabrication (FFF) 

Notes

Acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID /CTM /50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by European Regional Development Fund (FEDER) through the International and Competitive Operational Program (POCI) under the PT2020 Partnership Agreement.

References

  1. 1.
    Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 2011;7(3):907–20.CrossRefGoogle Scholar
  2. 2.
    Best SM, Porter AE, Thian ES, Huang J. Bioceramics: past, present and for the future. J Eur Ceram Soc. 2008;28(7):1319–27.CrossRefGoogle Scholar
  3. 3.
    Schlickewei W, Schlickewei C. The use of bone substitutes in the treatment of bone defects—the clinical view and history. Macromol Symp. 2007;253(1):10–23.CrossRefGoogle Scholar
  4. 4.
    Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, et al. 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc. 2010;30(12):2563–7.CrossRefGoogle Scholar
  5. 5.
    Woodruff MA, Hutmacher DW. The return of a forgotten polymer—polycaprolactone in the 21st century. Prog Polym Sci. 2010;35(10):1217–56.CrossRefGoogle Scholar
  6. 6.
    Hutmacher DW, Sittinger M, Risbud MV. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 2004;22(7):354–62.CrossRefGoogle Scholar
  7. 7.
    Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials. 2002;23(4):1169–85.CrossRefGoogle Scholar
  8. 8.
    Kalita SJ, Susmita B, Hosick HL, Amit B. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C. 2003;23(5):10.CrossRefGoogle Scholar
  9. 9.
    Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW. Additive manufacturing of tissues and organs. Prog Polym Sci. 2012;37(8):1079–104.CrossRefGoogle Scholar
  10. 10.
    Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6(4):1961–76.CrossRefGoogle Scholar
  11. 11.
    Papadimitriou SA, Papageorgiou GZ, Bikiaris DN. Crystallization and enzymatic degradation of novel poly(ε-caprolactone-co-propylene succinate) copolymers. Eur Polym J. 2008;44(7):2356–66.CrossRefGoogle Scholar
  12. 12.
    Vassiliou AA, Papageorgiou GZ, Achilias DS, Bikiaris DN. Non-isothermal crystallisation kinetics of in situ prepared poly(ɛ-caprolactone)/surface-treated SiO2 nanocomposites. Macromol Chem Phys. 2007;208(4):364–76.CrossRefGoogle Scholar
  13. 13.
    Sanandaji N. Different paths to explore confined crystallisation of PCL. Stockholm: Royal Institute of Technology; 2013.Google Scholar
  14. 14.
    Abedalwafa M, Wang F, Wang L, Li C. Biodegradable poly-epsilon-caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci. 2013;34:123–40.Google Scholar
  15. 15.
    Limwanich W, Phetsuk S, Meepowpan P, Kungwan N, Punyodom W. Kinetics studies of non-isothermal melt crystallization of poly(ε-caprolactone) and poly(L-lactide). Chiang Mai J Sci. 2016;43(2):329–38.Google Scholar
  16. 16.
    Murphy SH, Leeke GA, Jenkins MJ. A Comparison of the use of FTIR spectroscopy with DSC in the characterisation of melting and crystallisation in polycaprolactone. J Therm Anal Calorim. 2012;107(2):669–74.CrossRefGoogle Scholar
  17. 17.
    Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, et al. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B. 2014;2(43):7583–95.CrossRefGoogle Scholar
  18. 18.
    Poh PSP, Hutmacher DW, Stevens MM, Woodruff MA. Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration. Biofabrication. 2013;5(4):45005.CrossRefGoogle Scholar
  19. 19.
    Chia H, Wu B. Recent advances in 3D printing of biomaterials. J Biol Eng. 2015;9(1):1–14.CrossRefGoogle Scholar
  20. 20.
    Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496–504.CrossRefGoogle Scholar
  21. 21.
    Yao Q, Wei B, Guo Y, Jin C, Du X, Yan C, et al. Design, construction and mechanical testing of digital 3D anatomical data-based PCL–HA bone tissue engineering scaffold. J Mater Sci Mater Med. 2015;26(1):51.CrossRefGoogle Scholar
  22. 22.
    Temple JP, Hutton DL, Hung BP, Huri PY, Cook CA, Kondragunta R, et al. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res Part A. 2014;102(12):4317–25.Google Scholar
  23. 23.
    van Manen EHC, Zhang W, Walboomers XF, Vazquez B, Yang F, Ji W, et al. The influence of electrospun fibre scaffold orientation and nano-hydroxyapatite content on the development of tooth bud stem cells in vitro. Odontology. 2014;102(1):14–21.CrossRefGoogle Scholar
  24. 24.
    Rodriguez G, Dias J, D’Ávila MA, Bártolo P. Influence of hydroxyapatite on extruded 3D scaffolds. Procedia Eng. 2013;59:263–9.CrossRefGoogle Scholar
  25. 25.
    Wang Y, Rodriguez-Perez MA, Reis RL, Mano JF. Thermal and Thermomechanical Behaviour of Polycaprolactone and Starch/Polycaprolactone Blends for Biomedical Applications. Macromol Mater Eng. 2005;290(8):792–801.CrossRefGoogle Scholar
  26. 26.
    Huang Y, Liu H, He P, Yuan L, Xiong H, Xu Y, et al. Nonisothermal crystallization kinetics of modified bamboo fiber/PCL composites. J Appl Polym Sci. 2010;116:2119–25.CrossRefGoogle Scholar
  27. 27.
    Di Maio E, Iannace S, Sorrentino L, Nicolais L. Isothermal crystallization in PCL/clay nanocomposites investigated with thermal and rheometric methods. Polymer (Guildf). 2004;45(26):8893–900.CrossRefGoogle Scholar
  28. 28.
    Hao J, Yuan M, Deng X. Biodegradable and biocompatible nanocomposites of poly(ε-caprolactone) with hydroxyapatite nanocrystals: thermal and mechanical properties. J Appl Polym Sci. 2002;86(3):676–83.CrossRefGoogle Scholar
  29. 29.
    Qiao X, Li W, Sun K, Xu S, Chen X. Nonisothermal crystallization behaviors of silk-fibroin-fiber-reinforced poly(ε-caprolactone) biocomposites. J Appl Polym Sci. 2009;111(6):2908–16.CrossRefGoogle Scholar
  30. 30.
    Lanfranconi M, Alvarez VA, Ludueña LN. Isothermal crystallization of polycaprolactone/modified clay biodegradable nanocomposites. J Therm Anal Calorim. 2016;126(3):1273–80.CrossRefGoogle Scholar
  31. 31.
    Perez CJ, Vázquez A, Alvarez VA. Isothermal crystallization of layered silicate/starch-polycaprolactone blend nanocomposites. J Therm Anal Calorim. 2008;91(3):749–57.CrossRefGoogle Scholar
  32. 32.
    Liang JZ, Zhou L, Tang CY, Tsui CP. Crystallization properties of polycaprolactone composites filled with nanometer calcium carbonate. J Appl Polym Sci. 2013;128(5):2940–4.CrossRefGoogle Scholar
  33. 33.
    Clupper DC, Mecholsky JJ Jr, LaTorre GP, Greenspan DC. Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid. Biomaterials. 2002;23(12):2599–606.CrossRefGoogle Scholar
  34. 34.
    Chen QZ, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.CrossRefGoogle Scholar
  35. 35.
    Guanabara PJ, Rodrigues ACM, Peitl O. Bioactivity study of glass-ceramics with various crystalline fractions obtained by controlled crystallization. Mater Sci Eng, C. 2004;24(5):689–91.CrossRefGoogle Scholar
  36. 36.
    Oliveira JM, Correia RN, Fernandes M, Rocha J. Influence of the CaO/MgO ratio on the structure of phase-separated glasses: a solid state 29Si and 31P MAS NMR study. J Non Cryst Solids. 2000;265(3):221–9.CrossRefGoogle Scholar
  37. 37.
    Gomes DF. Compósitos de PCL e vidro bioativo: estudo do comportamento in vitro. University of Aveiro; 2013.Google Scholar
  38. 38.
    Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C. Novel observations on kinetics of nonisothermal crystallization in fly ash filled isotactic-polypropylene composites. J Appl Polym Sci. 2009;115(3):1510–7.CrossRefGoogle Scholar
  39. 39.
    Şanlı S, Durmus A, Ercan N. Effect of nucleating agent on the nonisothermal crystallization kinetics of glass fiber- and mineral-filled polyamide-6 composites. J Appl Polym Sci. 2012;125(S1):E268–81.CrossRefGoogle Scholar
  40. 40.
    Zhou WY, Duan B, Wang M, Cheung WL. Isothermal and non-isothermal crystallization kinetics of poly(L-Lactide)/carbonated hydroxyapatite nanocomposite microspheres. In: Dr. Boreddy Reddy, editor. Advances in diverse industrial applications of nanocomposites. InTech; 2011. p. 231–60.Google Scholar
  41. 41.
    Heireche L, Belhadji M. The methods matusita, kissinger and ozawa in the study of the crystallization of glasses. The case of Ge–Sb–Te alloys. Chalcogenide Lett. 2007;4(2):23–33.Google Scholar
  42. 42.
    Liu T, Mo Z, Wang S, Zhang H. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37(3):568–75.CrossRefGoogle Scholar
  43. 43.
    Ozawa T. Kinetics of non-isothermal crystallization. Polymer (Guildf). 1971;12(3):150–8.CrossRefGoogle Scholar
  44. 44.
    Avrami M. Kinetics of phase change. II: transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8(2):212–24.CrossRefGoogle Scholar
  45. 45.
    Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2015;119(1):635–42.CrossRefGoogle Scholar
  46. 46.
    Qiu S, Su Z, Qiu Z. Isothermal and nonisothermal crystallization kinetics of novel biobased poly(ethylene succinate-co-ethylene sebacate) copolymers from the amorphous state. J Therm Anal Calorim. 2017;129(2):801–8.CrossRefGoogle Scholar
  47. 47.
    Patnaik KSKR, Devi KS, Kumar VK. Non-isothermal crystallization kinetics of polypropylene (PP) and polypropylene (PP)/talc nanocomposite. Int J Chem Eng Appl. 2010;1(4):346–53.Google Scholar
  48. 48.
    Shi XM, Zhang J, Jin J, Chen SJ. Non-isothermal crystallization and melting of ethylene-vinyl acetate copolymers with different vinyl acetate contents. Express Polym Lett. 2008;2(9):623–9.CrossRefGoogle Scholar
  49. 49.
    Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by d.s.c. Polymer (Guildf). 1978;19(10):1142–4.CrossRefGoogle Scholar
  50. 50.
    Oburoğlu N, Ercan N, Durmus A, Kaşgöz A. Effects of filler type on the nonisothermal crystallization kinetics of poly(butylene terephthalate) (PBT) composites. J Appl Polym Sci. 2012;123(1):77–91.CrossRefGoogle Scholar
  51. 51.
    Sun X, Mai K, Zhang C, Cao M, Zhang Y, Zhang X. Nonisothermal crystallization kinetics of bio-based semi-aromatic polyamides. J Therm Anal Calorim. 2017;130(2):1021–30.CrossRefGoogle Scholar
  52. 52.
    Li Y, Han C, Yu Y, Xiao L, Shao Y. Isothermal and nonisothermal cold crystallization kinetics of poly(l-lactide)/functionalized eggshell powder composites. J Therm Anal Calorim. 2018;131(3):2213–23.CrossRefGoogle Scholar
  53. 53.
    Saad GR, Elsawy MA, Aziz MSA. Nonisothermal crystallization behavior and molecular dynamics of poly(lactic acid) plasticized with jojoba oil. J Therm Anal Calorim. 2017;128(1):211–23.CrossRefGoogle Scholar
  54. 54.
    Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.CrossRefGoogle Scholar
  55. 55.
    Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in polypropylene/surface-treated SiO2 nanocomposites. Thermochim Acta. 2005;427(1–2):117–28.CrossRefGoogle Scholar
  56. 56.
    Kang S-H, Ku D-C, Lim J-H, Yang Y-K, Kwak N-S, Hwang T-S. Characterization for pyrolysis of thermoplastic polyurethane by thermal analyses. Macromol Res. 2005;13(3):212–7.CrossRefGoogle Scholar
  57. 57.
    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C. 1964;6:183–95.CrossRefGoogle Scholar
  58. 58.
    Liu JY, Reni L, Wei Q, Wu JL, Liu S, Wang YJ, et al. Fabrication and characterization of polycaprolactone/calcium sulfate whisker composites. Express Polym Lett. 2011;5(8):742–52.CrossRefGoogle Scholar
  59. 59.
    Nanaki S, Papageorgiou G, Bikiaris D. Crystallization of novel poly(ε-caprolactone)- block-poly(propylene adipate) copolymers. J Therm Anal Calorim. 2012;108(2):633–45.CrossRefGoogle Scholar
  60. 60.
    Cesur S, Alp B, Küçükgöksel Y, Kahraman T, Balköse D. Crystallization kinetics and affecting parameters on polycaprolactone composites with inorganic and organic additives. J Vinyl Addit Technol. 2014;21(3):174–82.CrossRefGoogle Scholar
  61. 61.
    Sattari M, Mirsalehi SA, Khavandi A, Alizadeh O, Naimi-Jamal MR. Non-isothermal melting and crystallization behavior of UHMWPE/SCF/nano-SiO2 hybrid composites. J Therm Anal Calorim. 2015;122(3):1319–30.CrossRefGoogle Scholar
  62. 62.
    Wu T-M, Chen E-C. Isothermal and nonisothermal crystallization kinetics of poly(ε-caprolactone)/multi-walled carbon nanotube composites. Polym Eng Sci. 2006;46(9):1309–17.CrossRefGoogle Scholar
  63. 63.
    Wang X-L, Huang F-Y, Zhou Y, Wang Y-Z. Nonisothermal crystallization kinetics of poly(ε-caprolactone)/montmorillonite nanocomposites. J Macromol Sci Part B. 2009;48(4):710–22.CrossRefGoogle Scholar
  64. 64.
    Wei Z, Yu F, Chen G, Qu C, Wang P, Zhang W, et al. Nonisothermal crystallization and melting behavior of poly(ε-caprolactone)-b-poly(ethylene glycol)-b-poly(ε-caprolactone) by DSC analysis. J Appl Polym Sci. 2009;114(2):1133–40.CrossRefGoogle Scholar
  65. 65.
    Heo S-J, Kim S-E, Wei J, Hyun Y-T, Yun H-S, Kim D-H, et al. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process. J Biomed Mater Res, Part A. 2009;89A(1):108–16.Google Scholar
  66. 66.
    Dziadek M, Pawlik J, Menaszek E, Stodolak-Zych E, Cholewa-Kowalska K. Effect of the preparation methods on architecture, crystallinity, hydrolytic degradation, bioactivity, and biocompatibility of PCL/bioglass composite scaffolds. J Biomed Mater Res B Appl Biomater. 2015;103(8):1580–93.CrossRefGoogle Scholar
  67. 67.
    Carmona VB, de Campos A, Marconcini JM, Mattoso LHC. Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Therm Anal Calorim. 2014;115(1):153–60.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Liliana Sofia Oliveira Pires
    • 1
    • 2
    • 3
    Email author
  • Maria Helena Figueira Vaz Fernandes
    • 1
    • 2
  • José Martinho Marques de Oliveira
    • 2
    • 3
  1. 1.Department of Materials and Ceramic EngineeringUniversity of AveiroAveiroPortugal
  2. 2.CICECO - Aveiro Institute of MaterialsUniversity of AveiroAveiroPortugal
  3. 3.School of Design, Management and Production Technologies Northern AveiroUniversity of AveiroSantiago de Riba-Ul, Oliveira de AzeméisPortugal

Personalised recommendations