Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 3, pp 1823–1833 | Cite as

A numerical multiphase CFD simulation for PEMFC with parallel sinusoidal flow fields

  • Seyed Ali Atyabi
  • Ebrahim AfshariEmail author
Article

Abstract

Flow field design has an important role in proton exchange membrane fuel cell (PEMFC) due to its effect on the distribution of pressure, current density, temperature, heat and water management and PEMFC performance. In this paper, the sinusoidal flow field is examined and compared with straight-parallel configuration using a finite volume method based on non-isothermal, steady-state and multiphase model. A set of continuity, momentum, energy, species and electrochemical equations is solved by CFD commercial code with SIMPLE algorithm as a solution approach. The obtained results reveal that at an operating voltage, the maximum velocity and pressure drop for sinusoidal flow field are 1.18 and 6 times more than straight-parallel flow field at GDL/CL interface. Also, it is found that the current density and maximum power density for sinusoidal flow field are 0.65 and 0.32 w cm−2, respectively. Ultimately, the results indicated that the sinusoidal flow field has better performance in compared with straight-parallel flow field.

Keywords

PEMFC Flow field Sinusoidal Parallel CFD 

List of symbols

A

Superficial electrode area (m2)

Ck

Molar concentration of the kth species (mol m−3)

CP

Specific heat at constant pressure (J kg−1 K−1)

df

Diameter of pore (m)

\(D_{\text{k}}^{\text{eff}}\)

Effective diffusion coefficient of the kth component (m2 s−1)

F

Faraday constant (96,487, C mol−1)

i0

Exchange current density (A m−2)

j

Current density (A m−2)

k

Thermal conductivity (W m−1 K−1)

M

Molecular mass (kg mol−1)

p

Pressure (Pa)

R

Universal gas constant (8.314 J mol−1 K−1)

S

Source term

T

Temperature (K)

\(\vec{u}\)

Velocity vector (m s−1)

U

Uniformity index

Greek symbols

γ

Concentration dependence

α

Transfer coefficient for reaction

ɛ

Porosity

φ

Potential (V)

σe

Ionic conductivity of the membrane (S m−1)

\(\sigma_{\text{k}}^{\text{eff}}\)

Effective ionic conductivity coefficient of the membrane (S m−1)

K

Permeability (m2)

λ

Relative humidity of the membrane

μ

Dynamic viscosity (Pa s)

ρ

Density (kg m−3)

η

Over potential (V)

ς

Specific active surface area (m−1)

Subscripts

avg

Average

a

Anode

c

Cathode

e

Membrane

f

Fluid

oc

Open circuit

ref

Reference

s

Solid

References

  1. 1.
    Toyota Global Site | FCV Fuel Cell Vehicle, (n.d.). http://www.toyota-global.com/innovation/environmental_technology/fuelcell_vehicle/ (Accessed September 12 2017).
  2. 2.
    Peng L, Lai X, Liu D, Hu P, Ni J. Flow channel shape optimum design for hydro formed metal bipolar plate in PEM fuel cell. J Power Sour. 2008;178:223–30.  https://doi.org/10.1016/j.jpowsour.2007.12.037.CrossRefGoogle Scholar
  3. 3.
    Cheng CH, Lin HH, Lai GJ. Design for geometric parameters of PEM fuel cell by integrating computational fluid dynamics code with optimization method. J Power Sour. 2007;165:803–13.  https://doi.org/10.1016/j.jpowsour.2006.12.040.CrossRefGoogle Scholar
  4. 4.
    Su A, Ferng YM, Shih JC. CFD investigating the effects of different operating conditions on the performance and the characteristics of a high-temperature PEMFC. Energy. 2010;35:16–27.  https://doi.org/10.1016/j.energy.2009.08.033.CrossRefGoogle Scholar
  5. 5.
    Park HY, Hwang JW, Park KT, Kim S, Jeong YU, Jung HW, Kim SH. Effect of process conditions on dynamics and performance of PEMFC: Comparison with experiments. Thin Solid Films. 2010.  https://doi.org/10.1016/j.tsf.2010.01.051.CrossRefGoogle Scholar
  6. 6.
    Yuan W, Tang Y, Pan M, Li Z, Tang B. Model prediction of effects of operating parameters on proton exchange membrane fuel cell performance. Renew Energy. 2010;35:656–66.  https://doi.org/10.1016/j.renene.2009.08.017.CrossRefGoogle Scholar
  7. 7.
    Kuo J-K, Yen T-H, Chen C-K. Three-dimensional numerical analysis of PEM fuel cells with straight and wave-like gas flow fields channels. J Power Sour. 2008;177:96–103.  https://doi.org/10.1016/j.jpowsour.2007.11.065.CrossRefGoogle Scholar
  8. 8.
    Roshandel R, Arbabi F, Moghaddam GK. Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells. Renew. Energy. 2012;41:86–95.  https://doi.org/10.1016/j.renene.2011.10.008.CrossRefGoogle Scholar
  9. 9.
    Khazaee I, Ghazikhani M. Performance improvement of proton exchange membrane fuel cell by using annular shaped geometry. J Power Sour. 2011;196:2661–8.  https://doi.org/10.1016/j.jpowsour.2010.11.052.CrossRefGoogle Scholar
  10. 10.
    Bunmark N, Limtrakul S, Fowler MW, Vatanatham T, Gostick J. Assisted water management in a PEMFC with a modified flow field and its effect on performance. Int J Hydrog Energy. 2010;35:6887–96.  https://doi.org/10.1016/j.ijhydene.2010.04.027.CrossRefGoogle Scholar
  11. 11.
    Kuo J-K, Chen C-K. The effects of buoyancy on the performance of a PEM fuel cell with a wave-like gas flow channel design by numerical investigation. Int J Heat Mass Transf. 2007;50:4166–79.  https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.039.CrossRefGoogle Scholar
  12. 12.
    Hwang JJ, Hwang HS. Parametric studies of a double-cell stack of PEMFC using GrafoilTM flow-field plates. J Power Sour. 2002;104:24–32.  https://doi.org/10.1016/S0378-7753(01)00865-5.CrossRefGoogle Scholar
  13. 13.
    Li X, Sabir I, Park J. A flow channel design procedure for PEM fuel cells with effective water removal. J Power Sour. 2007;163:933–42.  https://doi.org/10.1016/j.jpowsour.2006.10.015.CrossRefGoogle Scholar
  14. 14.
    Kumar A, Reddy RG. Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells. J Power Sour. 2003;113:11–8.  https://doi.org/10.1016/S0378-7753(02)00475-5.CrossRefGoogle Scholar
  15. 15.
    Ge SH, Yi BL. A mathematical model for PEMFC in different flow modes. J Power Sour. 2003;124:1–11.  https://doi.org/10.1016/S0378-7753(03)00584-6.CrossRefGoogle Scholar
  16. 16.
    Scholta J, Escher G, Zhang W, Kuppers L, Orissen LJ, Lehnert W. Investigation on the influence of channel geometries on PEMFC performance. J Power Sour. 2006;155:66–71.  https://doi.org/10.1016/j.jpowsour.2005.05.099.CrossRefGoogle Scholar
  17. 17.
    Afshari E, Mosharaf-Dehkordi M, Rajabian H. An investigation of the PEM fuel cells performance with partially restricted cathode flow channels and metal foam as a flow distributor. Energy. 2017;118:705–15.  https://doi.org/10.1016/j.energy.2016.10.101.CrossRefGoogle Scholar
  18. 18.
    Um S, Wang C-Y, Chen KS. Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc. 2000;147:4485–93.  https://doi.org/10.1149/1.1394090.CrossRefGoogle Scholar
  19. 19.
    Springer T. Polymer electrolyte fuel cell model. J Electrochem Soc. 1991;138:2334–42.  https://doi.org/10.1149/1.2085971.CrossRefGoogle Scholar
  20. 20.
    Toghyani S, Moradi Nafchi F, Afshari E, Hasanpour K, Baniasadi E, Atyabi SA. Thermal and electrochemical performance analysis of a proton exchange membrane fuel cell under assembly pressure on gas diffusion layer. Int J Hydrog Energy. 2018;43:4534–45.  https://doi.org/10.1016/j.ijhydene.2018.01.068.CrossRefGoogle Scholar
  21. 21.
    Toghyani S, Afshari E, Baniasadi E, Atyabi SA. Thermal and electrochemical analysis of different flow field patterns in a PEM electrolyzer. Electrochim Acta. 2018;267:234–45.  https://doi.org/10.1016/j.electacta.2018.02.078.CrossRefGoogle Scholar
  22. 22.
    Afshari E, Jazayeri SA. Analyses of heat and water transport interactions in a proton exchange membrane fuel cell. J Power Sour. 2009;194:423–32.  https://doi.org/10.1016/j.jpowsour.2009.04.057.CrossRefGoogle Scholar
  23. 23.
    Afshari E, Jazayeri SA. Effects of the cell thermal behavior and water phase change on a proton exchange membrane fuel cell performance. Energy Convers Manag. 2010;51:655–62.  https://doi.org/10.1016/j.enconman.2009.11.004.CrossRefGoogle Scholar
  24. 24.
    Mazumder S, Cole JV. Rigorous 3-D mathematical modeling of PEM fuel cells. J Electrochem Soc. 2003;150:A1510.  https://doi.org/10.1149/1.1615609.CrossRefGoogle Scholar
  25. 25.
    Hao L, Cheng P. Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers. J Power Sour. 2009;186:104–14.  https://doi.org/10.1016/j.jpowsour.2008.09.086.CrossRefGoogle Scholar
  26. 26.
    Gößling S, Klages M, Haußmann J, Beckhaus P, Messerschmidt M, Arlt T, Kardjilov N, Manke I, Scholta J, Heinzel A. Analysis of liquid water formation in polymer electrolyte membrane (PEM) fuel cell flow fields with a dry cathode supply. J Power Sour. 2016;306:658–65.  https://doi.org/10.1016/j.jpowsour.2015.12.060.CrossRefGoogle Scholar
  27. 27.
    Um S, Wang C-Y, Chen KS. Computational fluid dynamics modeling of proton exchange membrane fuel cells. J Electrochem Soc. 2000;147:4485–93.  https://doi.org/10.1149/1.1394090.CrossRefGoogle Scholar
  28. 28.
    Mann RF, Amphlett JC, Peppley BA, Thurgood CP. Application of Butler–Volmer equations in the modelling of activation polarization for PEM fuel cells. J Power Sour. 2006;161:775–81.  https://doi.org/10.1016/j.jpowsour.2006.05.026.CrossRefGoogle Scholar
  29. 29.
    Nam JH, Kaviany M. Effective diffusivity and water-saturation distribution in single- and two-layer PEMFC diffusion medium. Int J Heat Mass Transf. 2003;46:4595–611.  https://doi.org/10.1016/S0017-9310(03)00305-3.CrossRefGoogle Scholar
  30. 30.
    Van Nguyen T. Modeling two-phase flow in the porous electrodes of proton exchange membrane fuel cells using the interdigitated flow fields. Proc Electrochem Soc. 1999;99–14:222–41.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of IsfahanIsfahanIran

Personalised recommendations