Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2383–2390 | Cite as

A novel and simple approach for predicting activation energy of thermolysis of some selected ionic liquids

  • Mohammad Hossein KeshavarzEmail author
  • Behzad NazariEmail author
  • Mohammad Jafari
  • Zahra Yazdani


The knowledge of thermal stability of ionic liquids (ILs) is a key property for industrial applications because low thermal stability of ILs may limit and decrease their performance in high-temperature industrial application. Activation energy of thermolysis is one of the best choices for kinetic study of the degradation process of ILs. A novel and simple model has been introduced for the prediction of activation energy of thermolysis of imidazolium-, pyridinium-, and phosphonium-based ILs through the structure of their anions and cations. Experimental data of 73 ILs corresponding to 82 data points were used to derive the new correlation. The values of coefficient of determination (R2) and root-mean-squared error (RMSE) of the new model are 0.8904 and 22.5 kJ mol−1, respectively. For seven ILs corresponding to 13 measured data, the reliability of the new model has been tested and compared with complex quantum mechanical methods, where the outputs quantum mechanical methods were available. The values of RMSE are 17.2 and 80.9 kJ mol−1 for the new model and quantum mechanical approaches, respectively, which confirm high reliability of the new model.


Activation energy of thermolysis Ionic liquid Correlation Structure of ion Thermal stability 



We would like to thank the research committee of Malek-ashtar University of Technology (MUT) for supporting this work.

Supplementary material

10973_2018_7266_MOESM1_ESM.docx (282 kb)
Supplementary material 1 (DOCX 282 kb)


  1. 1.
    Wang T, Liu R, Zhu M, Zhang J. Activation energy of self-heating process Studied by DSC. J Therm Anal Calorim. 2002;70(2):507–19.CrossRefGoogle Scholar
  2. 2.
    Dey A, Athar J, Varma P, Prasant H, Sikder AK, Chattopadhyay S. Graphene-iron oxide nanocomposite (GINC): an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. RSC Adv. 2015;5(3):1950–60.CrossRefGoogle Scholar
  3. 3.
    Xu Q, Tang S, Wang J, Ko JH. Pyrolysis kinetics of sewage sludge and its biochar characteristics. Process Saf Environ Prot. 2017;115:49–56.CrossRefGoogle Scholar
  4. 4.
    Lee PP, Back MH. Kinetic studies of the thermal decomposition of tetryl using accelerating rate calorimetry: part I. Derivation of the activation energy for decomposition. Thermochim Acta. 1986;107:1–16.CrossRefGoogle Scholar
  5. 5.
    Chandrasekaran A, Ramachandran S, Subbiah S. Determination of kinetic parameters in the pyrolysis operation and thermal behavior of Prosopis juliflora using thermogravimetric analysis. Bioresour Technol. 2017;233:413–22.CrossRefGoogle Scholar
  6. 6.
    Zohari N, Keshavarz MH, Dalaei Z. Prediction of decomposition onset temperature and heat of decomposition of organic peroxides using simple approaches. J Therm Anal Calorim. 2016;125(2):887–96.CrossRefGoogle Scholar
  7. 7.
    Keshavarz M, Pouretedal H, Semnani A. Relationship between thermal stability and molecular structure of polynitro arenes. Indian J Eng Mater S. 2009;16(1):61–4.Google Scholar
  8. 8.
    Zohari N, Abrishami F, Sheibani N. A novel simple correlation for predicting glass transition temperature of energetic azido-ester plasticizers through molecular structures. J Therm Anal Calorim. 2017;127(3):2243–51.CrossRefGoogle Scholar
  9. 9.
    Keshavarz MH, Mousaviazar A, Hayaty M. A novel approach for assessment of thermal stability of organic azides through prediction of their temperature of maximum mass loss. J Thermal Anal Calorim. 2017;129(3):1659–65.CrossRefGoogle Scholar
  10. 10.
    Ghani K, Keshavarz MH, Jafari M, Khademian F. A novel method for predicting decomposition onset temperature of cubic polyhedral oligomeric silsesquioxane derivatives. J Thermal Anal Calorim. 2018;132(1):761–70.CrossRefGoogle Scholar
  11. 11.
    Keshavarz MH, Pouretedal HR, Saberi E. A new method for predicting decomposition temperature of imidazolium-based energetic ionic liquids. Z für Anorg Allg Chem. 2017;643(2):171–9.CrossRefGoogle Scholar
  12. 12.
    Mousaviazar A, Keshavarz MH, Hayaty M. The effect of cellulose derivatives on the phase transition and thermal behavior of ammonium nitrate. J Therm Anal Calorim. 2017;128(2):1049–56.CrossRefGoogle Scholar
  13. 13.
    Hamadanian M, Keshavarz MH, Nazari B, Mohebbi M. Reliable method for safety assessment of melting points of energetic compounds. Process Saf Environ Prot. 2016;103:10–22.CrossRefGoogle Scholar
  14. 14.
    Keshavarz MH, Moradi S, Saatluo BE, Rahimi H, Madram AR. A simple accurate model for prediction of deflagration temperature of energetic compounds. J Therm Anal Calorim. 2013;112(3):1453–63.CrossRefGoogle Scholar
  15. 15.
    Zeman S, Jungová M. Sensitivity and performance of energetic materials. Propellants Explos Pyrotech. 2016;41(3):426–51.CrossRefGoogle Scholar
  16. 16.
    Klapötke TM. Chemistry of high-energy materials. 4th ed. Berlin: De Gruyter; 2017.CrossRefGoogle Scholar
  17. 17.
    Keshavarz MH, Klapötke TM, Sućeska M. Energetic materials designing bench (EMDB), version 1.0. Propellants Explos Pyrotech. 2017;42(8):854–6.CrossRefGoogle Scholar
  18. 18.
    Keshavarz MH, Klapötke TM. Energetic compounds: methods for prediction of their performance. Berlin: Walter de Gruyter GmbH & Co KG; 2017.CrossRefGoogle Scholar
  19. 19.
    Keshavarz MH, Klapötke TM. The properties of energetic materials. Berlin: Walter de Gruyter GmbH & Co KG; 2017.CrossRefGoogle Scholar
  20. 20.
    Keshavarz MH, Pouretedal HR, Shokrolahi A, Zali A, Semnani A. Predicting activation energy of thermolysis of polynitro arenes through molecular structure. J Hazard Mater. 2008;160(1):142–7.CrossRefGoogle Scholar
  21. 21.
    Keshavarz MH. Simple method for prediction of activation energies of the thermal decomposition of nitramines. J Hazard Mater. 2009;162(2):1557–62.CrossRefGoogle Scholar
  22. 22.
    Keshavarz MH, Motamedoshariati H, Moghayadnia R, Ghanbarzadeh M, Azarniamehraban J. A new computer code for assessment of energetic materials with crystal density, condensed phase enthalpy of formation, and activation energy of thermolysis. Propellants Explos Pyrotech. 2013;38(1):95–102.CrossRefGoogle Scholar
  23. 23.
    Keshavarz MH, Zohari N, Seyedsadjadi SA. Validation of improved simple method for prediction of activation energy of the thermal decomposition of energetic compounds. J Therm Anal Calorim. 2013;114(2):497–510.CrossRefGoogle Scholar
  24. 24.
    Keshavarz MH, Zohari N, Seyedsadjadi SA. Relationship between electric spark sensitivity and activation energy of the thermal decomposition of nitramines for safety measures in industrial processes. J Loss Prev Process Ind. 2013;26(6):1452–6.CrossRefGoogle Scholar
  25. 25.
    Keshavarz MH, Hayati M, Ghariban-Lavasani S, Zohari N. Relationship between activation energy of thermolysis and friction sensitivity of cyclic and Acyclic nitramines. Z für Anorg Allg Chem. 2016;642(2):182–8.CrossRefGoogle Scholar
  26. 26.
    Keshavarz MH, Keshavarz Z. Relation between electric spark sensitivity and impact sensitivity of nitroaromatic energetic compounds. Z für Anorg Allg Chem. 2016;642(4):335–42.CrossRefGoogle Scholar
  27. 27.
    Keshavarz M. A new method to predict activation energies of nitroparaffins. Indian J Eng Mater S. 2009;16(6):429–32.Google Scholar
  28. 28.
    Zohari N, Keshavarz MH, Seyedsadjadi SA. A novel method for risk assessment of electrostatic sensitivity of nitroaromatics through their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;115(1):93–100.CrossRefGoogle Scholar
  29. 29.
    Zohari N, Keshavarz MH, Seyedsadjadi SA. A link between impact sensitivity of energetic compounds and their activation energies of thermal decomposition. J Therm Anal Calorim. 2014;117(1):423–32.CrossRefGoogle Scholar
  30. 30.
    Keshavarz MH, Ghaffarzadeh M, Omidkhah MR, Farhadi K. Correlation between shock sensitivity of nitramine energetic compounds based on small-scale gap test and their electric spark sensitivity. Z Anorg Allg Chem. 2017;643(24):2158–62.CrossRefGoogle Scholar
  31. 31.
    Kroon MC, Buijs W, Peters CJ, Witkamp G-J. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Thermochim Acta. 2007;465(1):40–7.CrossRefGoogle Scholar
  32. 32.
    Kosmulski M, Gustafsson J, Rosenholm JB. Thermal stability of low temperature ionic liquids revisited. Thermochim Acta. 2004;412(1):47–53.CrossRefGoogle Scholar
  33. 33.
    Kamavaram V, Reddy RG. Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci. 2008;47(6):773–7.CrossRefGoogle Scholar
  34. 34.
    Meine N, Benedito F, Rinaldi R. Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem. 2010;12(10):1711–4.CrossRefGoogle Scholar
  35. 35.
    Palm WJ. Introduction to MATLAB 7 for engineers. New York: McGraw-Hill; 2005.Google Scholar
  36. 36.
    Tao R, Tamas G, Xue L, Simon SL, Quitevis EL. Thermophysical properties of imidazolium-based ionic liquids: the effect of aliphatic versus aromatic functionality. J Chem Eng Data. 2014;59(9):2717–24.CrossRefGoogle Scholar
  37. 37.
    Ngo HL, LeCompte K, Hargens L, McEwen AB. Thermal properties of imidazolium ionic liquids. Thermochim Acta. 2000;357:97–102.CrossRefGoogle Scholar
  38. 38.
    Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3(4):156–64.CrossRefGoogle Scholar
  39. 39.
    Fredlake CP, Crosthwaite JM, Hert DG, Aki SN, Brennecke JF. Thermophysical properties of imidazolium-based ionic liquids. J Chem Eng Data. 2004;49(4):954–64.CrossRefGoogle Scholar
  40. 40.
    Cao Y, Mu T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res. 2014. Scholar
  41. 41.
    Heym F, Korth W, Thiessen J, Kern C, Jess A. Evaporation and decomposition behavior of pure and supported ionic liquids under thermal stress. Chem Ing Tech. 2015;87(6):791–802.CrossRefGoogle Scholar
  42. 42.
    Heym F, Etzold BJ, Kern C, Jess A. Analysis of evaporation and thermal decomposition of ionic liquids by thermogravimetrical analysis at ambient pressure and high vacuum. Green Chem. 2011;13(6):1453–66.CrossRefGoogle Scholar
  43. 43.
    Villanueva M, Coronas A, García J, Salgado J. Thermal stability of ionic liquids for their application as new absorbents. Ind Eng Chem Res. 2013;52(45):15718–27.CrossRefGoogle Scholar
  44. 44.
    Clough MT, Geyer K, Hunt PA, Mertes J, Welton T. Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Phys Chem Chem Phys. 2013;15(47):20480–95.CrossRefGoogle Scholar
  45. 45.
    Hao Y, Peng J, Hu S, Li J, Zhai M. Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA–MS analysis and DFT calculations. Thermochim Acta. 2010;501(1):78–83.CrossRefGoogle Scholar
  46. 46.
    Maton C, De Vos N, Stevens CV. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev. 2013;42(13):5963–77.CrossRefGoogle Scholar
  47. 47.
    Liang R, Meirong Y, Xiaopeng X. Thermal stability and thermal decomposition kinetics of 1-butyl-3-methylimidazolium dicyanamide. Chin J Chem Eng. 2010;18(5):736–41.CrossRefGoogle Scholar
  48. 48.
    Muhammad A. Thermal and kinetic analysis of pure and contaminated ionic liquid: 1-butyl-2.3-dimethylimidazolium chloride (BDMIMCl). Polish Journal of. Chem Technol. 2016;18(2):122–5.Google Scholar
  49. 49.
    Lovelock KR, Armstrong JP, Licence P, Jones RG. Vaporisation and thermal decomposition of dialkylimidazolium halide ion ionic liquids. Phys Chem Chem Phys. 2014;16(4):1339–53.CrossRefGoogle Scholar
  50. 50.
    Zaitsau DH, Paulechka YU, Kabo GJ. The kinetics of thermal decomposition of 1-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem A. 2006;110(41):11602–4.CrossRefGoogle Scholar
  51. 51.
    Fox D, Gilman JW, De Long H, Trulove PC. TGA decomposition kinetics of 1-butyl-2, 3-dimethylimidazolium tetrafluoroborate and the thermal effects of contaminants. J Chem Thermodyn. 2005;37(9):900–5.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of ChemistryMalek-ashtar University of TechnologyShahin-ShahrIslamic Republic of Iran

Personalised recommendations