Effects of design and operating parameters on entropy generation of a dual cycle

Article

Abstract

In this paper, a performance analysis based on the entropy generation and thermal efficiency has been carried out for the irreversible dual cycle. The results show that the compression ratio versus entropy generation characteristic, the pressure ratio versus entropy generation characteristic, the compression ratio versus thermal efficiency characteristic, the pressure ratio versus thermal efficiency characteristic and the initial temperature versus thermal efficiency characteristic are approximately parabolic-like curves. There is negative linear relationship between entropy generation and environment temperature, between entropy generation and compression efficiency, and between entropy generation and expansion efficiency. There is positive linear relationship between entropy generation and initial temperature, between thermal efficiency and compression efficiency, and between thermal efficiency and expansion efficiency.

Keywords

Dual cycle Engine design parameters Operating parameters Optimization 

Notes

Acknowledgements

The author would like to thank the Shahrekord University for the financial support under Grant 94GRD1M1916.

References

  1. 1.
    Haseli Y. Optimization of a regenerative Brayton cycle by maximization of a newly defined second law efficiency. Energy Convers Manag. 2013;68:133–40.CrossRefGoogle Scholar
  2. 2.
    Bejan A. Entropy generation on minimization: the new thermodynamics of finite-size device and finite-time processes. J Appl Phys. 1996;79(3):1191–218.CrossRefGoogle Scholar
  3. 3.
    Ge YL, Chen LG, Sun FR. Ecological optimization of an irreversible Otto cycle. Arab J Sci Eng. 2013;38(2):373–81.CrossRefGoogle Scholar
  4. 4.
    Chen LG, Sun FR. Advances in finite time thermodynamics: analysis and optimization. New York: Nova Science Publishers; 2004.Google Scholar
  5. 5.
    Chen LG, Wu C, Sun FR. Finite time thermodynamic optimization or entropy generation minimization of energy systems. J Non-Equilib Thermodyn. 1999;24(4):327–59.CrossRefGoogle Scholar
  6. 6.
    Haseli Y, Dincer I, Naterer GF. Unified approach to exergy efficiency, environmental impact and sustainable development for standard thermodynamic cycles. Int J Green Energy. 2008;5:105–19.CrossRefGoogle Scholar
  7. 7.
    Andresen B, Gordon JM. Optimal paths for minimizing entropy generation in a common class of finite-time heating and cooling processes. Int J Heat Fluid Flow. 1992;13(3):294–9.CrossRefGoogle Scholar
  8. 8.
    Hesselgreaves JE. Rationalisation of second law analysis of heat exchangers. Int J Heat Mass Transf. 2000;43:4189–204.CrossRefGoogle Scholar
  9. 9.
    Bejan A. Second law analysis in heat transfer. Energy. 1980;5:721–32.CrossRefGoogle Scholar
  10. 10.
    Bejan A. Advanced engineering thermodynamics. New Jersey: Wiley; 2006.Google Scholar
  11. 11.
    Ge Y, Chen L, Sun F. Optimal path of piston motion of irreversible Otto cycle for minimum entropy generation with radiative heat transfer law. J Energy Inst. 2012;85(3):140–9.CrossRefGoogle Scholar
  12. 12.
    Teh KY, Edwards CF. An optimal control approach to minimizing entropy generation in an adiabatic internal combustion engine. Trans ASME J Dyn Syst Meas Control. 2008;130(4):041008–17.CrossRefGoogle Scholar
  13. 13.
    Teh KY, Edwards CF. An optimal control approach to minimizing entropy generation in an adiabatic IC engine with fixed compression ratio. In Proceedings, IMECE2006, ASME international mechanical engineering congress and exposition, Chicago, Ill., USA, 2006; 6648–6653.Google Scholar
  14. 14.
    Teh KY, Miller SL, Edwards CF. Thermodynamic requirements for maximum internal combustion engine cycle efficiency part 1: optimal combustion strategy. Int J Engine Res. 2008;9(6):449–65.CrossRefGoogle Scholar
  15. 15.
    You J, Chen LG, Wu ZX, Sun FR. Thermodynamic performance of dual-Miller cycle (DMC) with polytropic processes based on power output, thermal efficiency and ecological function. Sci China Technol Sci. 2018;1(3):453–63.CrossRefGoogle Scholar
  16. 16.
    Ge YL, Chen LG, Sun FR. Optimal paths of piston motion of irreversible diesel cycle for minimum entropy generation. Therm Sci. 2011;15(4):975–93.CrossRefGoogle Scholar
  17. 17.
    Rashidi MM, Ali M, Freidoonimehr N, Nazari F. Parametric analysis and optimization of entropy generation in unsteady MHD flow over a stretching rotating disk using artificial neural network and particle swarm optimization algorithm. Energy. 2013;55:497–510.CrossRefGoogle Scholar
  18. 18.
    Haseli Y. Performance of irreversible heat engines at minimum entropy generation. Appl Math Mod. 2013;37:9810–7.CrossRefGoogle Scholar
  19. 19.
    Ebrahimi R. Second law analysis on an air-standard Miller engine. Acta Phys Pol A. 2016;129(6):1079–89.CrossRefGoogle Scholar
  20. 20.
    Leff HS, Jones GL. Irreversibility, entropy production, and thermal efficiency. Am J Phys. 1975;43:973–80.CrossRefGoogle Scholar
  21. 21.
    Salamon P, Nitzan A, Andresen B, Berry RS. Minimum entropy production and the optimization of heat engines. Phys Rev A. 1980;21:2115–29.CrossRefGoogle Scholar
  22. 22.
    Salamon P, Nitzan A. Finite time optimizations of a Newton’s law Carnot cycle. J Chem Phys. 1981;74:3546–60.CrossRefGoogle Scholar
  23. 23.
    Salamon P, Hoffmann KH, Schubert S, Berry RP, Andresen B. What conditions make minimum entropy production equivalent to maximum power production. J Non-Equilib Thermodyn. 2001;26:73–83.CrossRefGoogle Scholar
  24. 24.
    Qian X, Li Z. Analysis of entransy dissipation in heat exchangers. Int J Therm Sci. 2011;50:608–14.CrossRefGoogle Scholar
  25. 25.
    Vargas JVC, Bejan A. Thermodynamic optimization of the match between two streams with phase change. Energy. 2000;25:15–33.CrossRefGoogle Scholar
  26. 26.
    Ust Y, Arslan F, Ozsari I, Cakir M. Thermodynamic performance analysis and optimization of DMC (dual Miller cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria. Energy. 2015;90:552–9.CrossRefGoogle Scholar
  27. 27.
    Ebrahimi R. Effects of equivalence ratio and mean piston speed on performance of an irreversible dual cycle. Acta Phys Pol A. 2011;120:384–9.CrossRefGoogle Scholar
  28. 28.
    Ebrahim R. Performance analysis of irreversible Atkinson cycle with considerations of stroke length and volumetric efficiency. J Energy Inst. 2011;84(1):38–43.CrossRefGoogle Scholar
  29. 29.
    Ebrahimi R. Effects of variable specific heat ratio of working fluid on performance of an endoreversible Diesel cycle. J Energ Inst. 2010;83:1–5.CrossRefGoogle Scholar
  30. 30.
    Ebrahimi R, Chen L. Effects of variable specific heat ratio of working fluid on the performance of an irreversible Diesel cycle. Int J Ambient Energy. 2010;31(2):101–8.CrossRefGoogle Scholar
  31. 31.
    Ge YL, Chen LG, Sun FR. Progress in finite time thermodynamic studies for internal combustion engine cycles. Entropy. 2016;18(4):139.CrossRefGoogle Scholar
  32. 32.
    Ebrahimi R, Sherafati M. Thermodynamic simulation of performance of a dual cycle with stroke length and volumetric efficiency. J Therm Anal Calorim. 2013;111(1):951–7.CrossRefGoogle Scholar
  33. 33.
    Ebrahimi R. Thermodynamic modeling of performance of a Miller cycle with engine speed and variable specific heat ratio of working fluid. Comput Math Appl. 2011;62:2169–76.CrossRefGoogle Scholar
  34. 34.
    Wang WH, Chen LG, Sun FR, Wu C. The effects of friction on the performance of an air stand Dual cycle. Exergy Int J. 2002;2(4):340–4.CrossRefGoogle Scholar
  35. 35.
    Chen LG, Sun FR, Wu C. Optimal performance of an irreversible dual-cycle. Appl Energy. 2004;79(1):3–14.CrossRefGoogle Scholar
  36. 36.
    Wu ZX, Chen LG, Ge YL, Sun FR. Power, efficiency, ecological function and ecological coefficient of performance of an irreversible dual-Miller cycle (DMC) with nonlinear variable specific heat ratio of working fluid. Eur Phys J Plus. 2017;132(5):203.CrossRefGoogle Scholar
  37. 37.
    Zhao B, Han S, Shi CJ, Yang XF, Xu LZ, Gao DK, Zhang YY. Heat transfer analysis of fast response sensor for internal combustion engine based on Coiflet wavelet finite element method. J Therm Anal Calorim. 2017;129(2):1181–7.CrossRefGoogle Scholar
  38. 38.
    Vinukumar K, Azhagurajan A, Vettivel SC, Vedaraman N. Rice husk as nanoadditive in diesel–biodiesel fuel blends used in diesel engine. J Therm Anal Calorim. 2018;131(2):1333–43.CrossRefGoogle Scholar
  39. 39.
    Chen LG, Ge YL, Sun FR, Wu C. Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible dual cycle. Energy Convers Manag. 2006;47(18/19):3224–34.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering of BiosystemShahrekord UniversityShahrekordIran

Personalised recommendations