Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1447–1456 | Cite as

A new method to create one-part non-Portland cement powder

  • H. A. Abdel-Gawwad
  • E. E. Hekal
  • H. El-Didamony
  • F. S. Hashem
  • Aya H. Mohammed


Non-Portland cement or alkali-activated slag is regarded as non-friendly for users, due to the corrosive nature of alkaline solution. This negatively affects the mass production and commercial viability of this cement. In this work, user- and eco-friendly one-part non-Portland cement (NPC) was prepared by blending ground-granulated blast-furnace slag (GGBFS) with stable dry activator (SDA). SDA was synthesized by mixing two moles of NaOH with one mole of MgCO3 or dolomite, followed by drying and pulverizing to a fixed particle size (namely, SDA-M and SDA-D, respectively). The Mg source was chosen to prepare active magnesia with no firing. So, this process was considered as eco-friendly method for this purpose. Ordinary Portland cement (OPC) was used for comparison. The SDA-M content plays a circular role on the reduction of drying shrinkage of one-part NPC. The SDA-M has a potential impact on the compressive strength development of one-part NPC compared to SDA-D. NPC containing 12 mass% SDA-M (NPC-12) gave compressive strength values superior to those of OPC at all curing ages, suggesting that the NPC-12 can be beneficially used as an alternative to OPC as confirmed by X-ray diffraction (XRD), thermogravimetric analysis (TGA/DTG), and scanning electron microscopy (SEM).


One-part NPC OPC Hydrotalcite Stable dry activator Drying shrinkage 


  1. 1.
    Shen W, Cai Z, Liu Z. Humble talk about low carbon dioxide emission technique for cement-concrete industry. Cement Guide For New Epoch. 2008;4:1–7.Google Scholar
  2. 2.
    Purdon AO. The action of alkalis on blast-furnace slag. J Soc Chem Ind Trans Commun. 1940;59:191–202.CrossRefGoogle Scholar
  3. 3.
    Teoreanu I, Volceanov A, Stoleriu S. Non-Portland cements and derived materials. Cem Concr Res. 2005;27(6):650–60.CrossRefGoogle Scholar
  4. 4.
    Oberlink AE. Non-Portland cement activation of blast furnace slag. Master’s theses, University of Kentucky 2010; UK.Google Scholar
  5. 5.
    Abdel Gawwad HA, Abd El-Aleem S, Ouda AS. Preparation and characterization of one-part non-Portland cement. Ceram Inter. 2016;42:220–8.CrossRefGoogle Scholar
  6. 6.
    Yang KH, Cho AR, Song JK, Nam SH. Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr Build Mater. 2012;29:410–9.CrossRefGoogle Scholar
  7. 7.
    Juenger MC, Winnefeld F, Provis JL, Ideker JH. Advances in alternative cementitious binders. Cem Concr Res. 2011;41:1232–43.CrossRefGoogle Scholar
  8. 8.
    Wang SD, Pu XC, Scrivener KL, Pratt PL. Alkali activated slag cement and concrete: a review of properties and problems. Adv Cem Res. 1995;7(27):93–102.CrossRefGoogle Scholar
  9. 9.
    Juenger MCG, Winnefeld F, Provis JL, Ideker J. Advances in alternative cementitious binders. Cem Concr Res. 2014;1(12):1232–43.CrossRefGoogle Scholar
  10. 10.
    Duxson P, Provis JL. Designing precursors for geopolymer cements. J Am Ceram Soc. 2008;91(12):3864–9.CrossRefGoogle Scholar
  11. 11.
    Shi C, Krivenko PV, Roy DM. Alkali-activated cements and concretes. Abingdon: Taylor & Francis; 2006.CrossRefGoogle Scholar
  12. 12.
    Provis JL, Bernal SA. Geopolymers and related alkali-activated materials. Annu Rev Mater Res. 2014;44(1):299–327.CrossRefGoogle Scholar
  13. 13.
    Wang SD, Scrivener KL, Pratt PL. Factors affecting the strength of alkali-activated slag. Cem Concr Res. 1994;24(6):1033–43.CrossRefGoogle Scholar
  14. 14.
    Han F, Zhang Z, Liu J, et al. Effect of water-to-binder ratio on the hydration kinetics of composite binder containing slag or fly ash. J Therm Anal Calorim. 2017;128(2):855–65.CrossRefGoogle Scholar
  15. 15.
    Liu S, Li Q, Han W. Effect of various alkalis on hydration properties of alkali-activated slag cements. J Therm Anal Calorim. 2018;131(3):3093–104.CrossRefGoogle Scholar
  16. 16.
    Živica V. Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr Build Mater. 2007;21(7):1463–9.CrossRefGoogle Scholar
  17. 17.
    Heikal M, Nassar MY, El-Sayed G, Ibrahim SM. Physico-chemical, mechanical, microstructure and durability characteristics of alkali activated Egyptian slag. Constr Build Mater. 2014;69:60–72.CrossRefGoogle Scholar
  18. 18.
    Heikal M, Ibrahim SM. Characteristics and durability of alkali activated slag-microsilica pastes subjected to sulphate and chloride ions attack. Ceramics-Silikáty. 2015;59(2):81–9.Google Scholar
  19. 19.
    El-Didamony H, Amer AA, Abd El-Aziz H. Properties and durability of alkali-activated slag pastes immersed in seawater. Ceram Int. 2012;38:3773–80.CrossRefGoogle Scholar
  20. 20.
    Bakharev T, Sanjayan JG, Cheng YB. Sulfate attack on alkali-activated slag concrete. Cem Concr Res. 2002;32:211–6.CrossRefGoogle Scholar
  21. 21.
    Berndt ML. Properties of sustainable concrete containing fly ash slag and recycled concrete aggregate. Constr Build Mater. 2009;23:2606–13.CrossRefGoogle Scholar
  22. 22.
    Chi M, Chang J, Huang R. Strength and drying shrinkage of alkali-activated slag paste and mortar. Adv Civ Eng. 2012;2012:1–7.CrossRefGoogle Scholar
  23. 23.
    Hu JJ. Comparison between the effects of superfine steel slag and superfine phosphorus slag on the long-term performances and durability of concrete. Therm Anal Calorim. 2017;128(3):1251–63.CrossRefGoogle Scholar
  24. 24.
    Sun J, Wang Z, Chen Z. Hydration mechanism of composite binders containing blast furnace ferronickel slag at different curing temperatures. J Therm Anal Calorim. 2018;131(3):2291–301.CrossRefGoogle Scholar
  25. 25.
    Davidovits J. Geopolymer chemistry and applications. In: Davidovits J, editor. Development of user-friendly systems. 3rd ed. Saint Quentin: Geopolymer Institute; 2011. p. 433–43.Google Scholar
  26. 26.
    Ye H, Cartwright C, Rajabipour F, Radlińska A. Understanding the drying shrinkage performance of alkali activated slag mortar. Cem Concr Compos. 2017;76:13–24.CrossRefGoogle Scholar
  27. 27.
    Cartwright C, Rajabipour F, Radlińska A. Shrinkage characteristics of alkali-activated slag cements. J Mater Civ Eng. 2015;27(7):B4014007.CrossRefGoogle Scholar
  28. 28.
    Bilim C, Karahan O, Duran C, Atiş Sİ. Effects of chemical admixtures and curing conditions on some properties of alkali-activated cement less slag mixtures. KSCE J Civ Eng. 2015;19(3):733–41.CrossRefGoogle Scholar
  29. 29.
    Jin F, Abdollah Zadeh A, Al-Tabbaa A. Effect of different MgOs on the hydration of MgO-activated granulated ground blast furnace slag paste. In: Proceedings of 3rd international conference on sustainable construction materials and technologies. Kyoto, Japan 2013.Google Scholar
  30. 30.
    Abdel Gawwad HA, Abd El-Aleem S. Effect of reactive magnesium oxide on the properties of alkali activated geopolymer cement pastes. Ceramics-Silikáty. 2015;59(1):37–47.Google Scholar
  31. 31.
    Jin F, Gu K, Al-Tabbaa A. Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Constr Build Mater. 2014;51:395–404.CrossRefGoogle Scholar
  32. 32.
    Yi Y, Liska M, Al-Tabbaa A. Properties and microstructure of GGBS-MgO pastes. Adv Cem Res. 2014;26:114–22.CrossRefGoogle Scholar
  33. 33.
    Jin F, Gu K, Al-Tabbaa A. Strength and hydration properties of reactive MgO-activated ground granulated blast furnace slag paste. Cem Concr Compos. 2015;57:8–16.CrossRefGoogle Scholar
  34. 34.
    Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—Part I: Effect of MgO. Cem Concr Res. 2011;41:955–63.CrossRefGoogle Scholar
  35. 35.
    Shen W, Wang Y, Zhang T, Zhou M, Li J, Cui X. Magnesia modification of alkali activated slag fly ash cement. J Wuhan Univ Technol. Mater Sci. 2011;26:121–5.CrossRefGoogle Scholar
  36. 36.
    ASTM C191. Standard test methods for time of setting of hydraulic cement by Vicat Needle. 2013.Google Scholar
  37. 37.
    ASTM C109M. Standard test method for compressive strength of hydraulic cement mortars. 2012.Google Scholar
  38. 38.
    ASTM C490. Standard practice for use of apparatus for the determination of length change of hardened cement paste, mortar, and concrete. 2007.Google Scholar
  39. 39.
    Dweck J, Buchler PM, Coelho ACV, Cartledge FK. Hydration of Portland cement blended with calcium carbonate. Thermochim Acta. 2000;346:105–13.CrossRefGoogle Scholar
  40. 40.
    Alarconruiz L, Platret G, Massieu E, Ehrlacher A. The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem Concr Res. 2005;35:609–13.CrossRefGoogle Scholar
  41. 41.
    Jin F, Al-Tabbaa A. Thermogravimetric study on the hydration of reactive MgO and silica mixture at room temperature. Thermochim Acta. 2013;566:162–8.CrossRefGoogle Scholar
  42. 42.
    Tartaglione G, Tabuani D, Camino G. Thermal and morphological characterisation of organically modified sepiolite. Microporous Mesoporous Mater. 2008;107:161–8.CrossRefGoogle Scholar
  43. 43.
    Esteves LP. On the hydration of water-entrained cement-silica system combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta. 2011;518:27–35.CrossRefGoogle Scholar
  44. 44.
    Vedalakshmi R. Quantification of hydrated cement products of blended cements in low and medium strength using TG and DTA technique. Thermochim Acta. 2003;407:49–60.CrossRefGoogle Scholar
  45. 45.
    Bakharev T, Cheng YB. Resistance of alkali activated slag concrete to carbonation. Cem Concr Res. 2002;31(9):1277–83.CrossRefGoogle Scholar
  46. 46.
    ASTM C 150M. Standard Specification for Portland cement. 2012.Google Scholar
  47. 47.
    Richardson IG, Brough AR, Groves GW, Dobson CM. The characterization of hardened alkali activated blast-furnace slag pastes and the nature of calcium silicate hydrate (C-S-H) paste. Cem Concr Res. 1994;24:813–29.CrossRefGoogle Scholar
  48. 48.
    Wang SD, Scrivener KL. Hydration products of alkali-activated slag cement. Cem Concr Res. 1995;25:561–71.CrossRefGoogle Scholar
  49. 49.
    Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A. Geopolymer technology: the current state of the art. J Mater Sci. 2007;42(9):2917–33.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • H. A. Abdel-Gawwad
    • 1
    • 2
  • E. E. Hekal
    • 3
  • H. El-Didamony
    • 4
  • F. S. Hashem
    • 3
  • Aya H. Mohammed
    • 5
  1. 1.Building Materials Chemistry, Raw Building Materials Research and Processing Technology InstituteHousing and Building National Research CenterDokki, GizaEgypt
  2. 2.Research and DevelopmentACFA Industrial CompanyRiyadhKingdom of Saudi Arabia
  3. 3.Chemistry Department, Faculty of ScienceAin Shams UniversityCairoEgypt
  4. 4.Chemistry Department, Faculty of ScienceZagazig UniversityZagazigEgypt
  5. 5.Faculty of EngineeringFuture University in EgyptCairoEgypt

Personalised recommendations