Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 1429–1438 | Cite as

Early hydration of calcium sulfoaluminate cement in the presence of hydroxyethyl methyl cellulose

  • Guofang ZhangEmail author
  • Rui He
  • Xiaopei Lu
  • Peiming Wang


The influence of hydroxyethyl methyl cellulose (HEMC) on the early hydration evolution of calcium sulfoaluminate (CSA) cement within 72 h was studied by using isothermal calorimetry, thermal analysis (TG–DTA), X-ray diffraction analysis, and environmental scanning electron microscopy. The results reveal that the HEMC definitely has different influences on the hydration heat flow of CSA cement during different periods, postpones the occurrence time of two main heat flow peaks, and decreases the early hydration degree. HEMC assumes different influences on the formation and morphology evolution of hydrates with hydration proceeding. HEMC manifests great retardation on the formation of AFt and AH3 within 12 h of hydration, whereas ensures higher AFt content and lower contents of AH3 and AFm in cement paste after 24 h. Moreover, the influence of HEMC on the early hydration evolution of CSA cement enhances with its dosage increasing.


Calcium sulfoaluminate cement Hydroxyethyl methyl cellulose (HEMC) Early hydration evolution Hydrates Morphology 



The authors greatly acknowledge the financial support of this work by the Fund of National Key Research and Development Programs in the 13th Five-year Plan of China (2016YFC0700905), the Fund of Joint Sino-German Research Projects (GZ 1290), the National Natural Science Fund of China (51102182, U1504508), the Fund of Science Research Project of STCSM (17DZ1200303), and the Open Fund of State Key Laboratory of Solid Waste Reuse for Building Materials (SWR-2016-001).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Su M, Zhang L, Wang Y. Calcium sulfoaluminate cement. Beijing: Beijing Chemistry Industry Press; 1999.Google Scholar
  2. 2.
    Gartner E. Industrially interesting approaches to “low-CO2” cements. Cem Concr Res. 2004;34(9):1489–98.CrossRefGoogle Scholar
  3. 3.
    Sharp JH, Lawrence CD, Yang R. Calcium sulfoaluminate cements—low energy cements, special cements or what? Adv Cem Res. 1999;11(1):3–13.CrossRefGoogle Scholar
  4. 4.
    Zhou Q, Milestone NB, Hayes M. An alternative to Portland cement for waste encapsulation—the calcium sulfoaluminate cement system. J Hazard Mater. 2006;136(1):120–9.CrossRefGoogle Scholar
  5. 5.
    Shi C, Jiménez AF, Palomo A. New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res. 2011;41(7):750–63.CrossRefGoogle Scholar
  6. 6.
    Juenger MCG, Winnefeld F, Provis JL, Ideker JH. Advances in alternative cementitious binders. Cem Concr Res. 2011;41(12):1232–43.CrossRefGoogle Scholar
  7. 7.
    Rungchet A, Chindaprasirt P, Wansom S, Pimraksa K. Hydrothermal synthesis of calcium sulfoaluminate–belite cement from industrial waste materials. J Clean Prod. 2010;115:273–83.CrossRefGoogle Scholar
  8. 8.
    Guo X, Shi H, Hu W, Wu K. Durability and microstructure of CSA cement based materials from MSWI fly ash. Cem Concr Compos. 2014;46(2):26–31.CrossRefGoogle Scholar
  9. 9.
    Bernardo G, Telesca A, Valenti GL. A porosimetric study of calcium sulfoaluminate cement pastes cured at early ages. Cem Concr Res. 2006;36(6):1042–7.CrossRefGoogle Scholar
  10. 10.
    Pelletier-Chaignat L, Winnefeld F, Lothenbach B. The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: hydration mechanism and mortar properties. Cem Concr Compos. 2010;32(7):497–507.CrossRefGoogle Scholar
  11. 11.
    Trauchessec R, Mechling JM, Lecomte A, Roux A, Rolland BL. Impact of anhydrite proportion in a calcium sulfoaluminate cement and Portland cement blend. Adv Cem Res. 2014;26(6):325–33.CrossRefGoogle Scholar
  12. 12.
    Coumes CCD, Courtois S, Peysson S, Ambroise J, Pera J. Calcium sulfoaluminate cement blended with OPC: a potential binder to encapsulate low level radioactive slurries of complex chemistry. Cem Concr Res. 2009;39(9):740–7.CrossRefGoogle Scholar
  13. 13.
    Peysson S, Pera J, Chabannet M. Immobilization of heavy metals by calcium sulfoaluminate cement. Cem Concr Res. 2005;35(12):2261–70.CrossRefGoogle Scholar
  14. 14.
    Berger S, Coumes CCD, Le Bescop P, Damidot D. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: cement hydration, strength development and volume stability. J Hazard Mater. 2011;194:256–67.CrossRefGoogle Scholar
  15. 15.
    Berger S, Coumes CCD, Champenois JB, Douillard T, Le Bescop P, Aouad G, Damidot D. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: leaching behaviour of the solidified waste form, mechanisms of zinc retention. J Hazard Mater. 2011;194:268–76.CrossRefGoogle Scholar
  16. 16.
    García-Maté M, De La Torre AG, León-Reina L, Losilla ER, Aranda MAG, Santacruz I. Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cem Concr Compos. 2015;55(1):53–61.CrossRefGoogle Scholar
  17. 17.
    Allevi S, Marchi M, Scotti F, Bertini S, Cosentino C. Hydration of calcium sulphoaluminate clinker with additions of different calcium sulphate sources. Mater Struct. 2016;49(1–2):453–66.CrossRefGoogle Scholar
  18. 18.
    Bizzozero J, Gosselin C, Scrivener KL. Expansion mechanisms in calcium aluminate and sulfoaluminate systems with calcium sulfate. Cem Concr Res. 2014;56(2):190–202.CrossRefGoogle Scholar
  19. 19.
    Hargis CW, Telesca A, Monteiro PJ. Calcium sulfoaluminate (Ye’elimite) hydration in the presence of gypsum, calcite, and vaterite. Cem Concr Res. 2014;65(9):15–20.CrossRefGoogle Scholar
  20. 20.
    Mihelj NF, Ukrainczyk N, Leakovic S, Sipusic J. Waste phosphogypsum—toward sustainable reuse in calcium sulfoaluminate cement based building materials. Chem Biochem Eng. 2013;27(2):26–8.Google Scholar
  21. 21.
    Shen Y, Qian J. Utilisation of phosphogypsum for sulfate-rich belite sulfoaluminate cement production. Adv Cem Res. 2015;27(9):515–25.CrossRefGoogle Scholar
  22. 22.
    Huang Y, Qian J, Li C, Liu N, Shen Y, Ma Y, Sun H, Fan Y. Influence of phosphorus impurities on the performances of calcium sulfoaluminate cement. Constr Build Mater. 2017;149:37–44.CrossRefGoogle Scholar
  23. 23.
    Xu LL, Wu K, Li N, Zhou XY, Wang PM. Utilization of flue gas desulfurization gypsum for producing calcium sulfoaluminate cement. J Clean Prod. 2017;161:803–11.CrossRefGoogle Scholar
  24. 24.
    Huang YB, Qian JS, Liang J, Liu N, Li FL, Shen Y. Characterization and calorimetric study of early-age hydration behaviors of synthetic ye’elimite doped with the impurities in phosphogypsum. J Therm Anal Calorim. 2016;123(2):1545–53.CrossRefGoogle Scholar
  25. 25.
    Pelletier-Chaignat L, Winnefeld F, Lothenbach B, Mueller CJ. Beneficial use of limestone filler with calcium sulfoaluminate cement. Cem Concr Res. 2012;26:619–27.Google Scholar
  26. 26.
    Martin LHJ, Winnefeld F, Müller CJ, Lothenbach B. Contribution of limestone to the hydration of calcium sulfoaluminate cement. Cem Concr Compos. 2015;62:204–11.CrossRefGoogle Scholar
  27. 27.
    Ioannou S, Reig L, Paine K, Quillin K. Properties of a ternary calcium sulfoaluminate-calcium sulfate-fly ash cement. Cem Concr Res. 2014;56(2):75–83.CrossRefGoogle Scholar
  28. 28.
    Garcia-Mate M, De La Torre AG, Leon-reina L, Aranda MAG, Santacruz I. Hydration studies of calcium sulfoaluminate cements blended with fly ash. Cem Concr Res. 2013;54(12):12–20.CrossRefGoogle Scholar
  29. 29.
    Wu K, Shi HS, Xu LL, Guo XL, De Schutter G, Xu MF. Influence of heavy metals on the early hydration of calcium sulfoaluminate. J Therm Anal Calorim. 2014;115:1153–62.CrossRefGoogle Scholar
  30. 30.
    Coumes CCD, Dhoury M, Champenois JB, Mercier C, Damidot D. Physico-chemical mechanisms involved in the acceleration of the hydration of calcium sulfoaluminate cement by lithium ions. Cem Concr Res. 2017;96:42–51.CrossRefGoogle Scholar
  31. 31.
    Champenois JB, Dhoury M, Coumes CCD, Mercier C, Revel B, Le Bescop P, Damidot D. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement. Cem Concr Res. 2015;70:83–93.CrossRefGoogle Scholar
  32. 32.
    Coumes CCD, Dhoury M, Champenois JB, Mercier C, Damidot D. Combined effects of lithium and borate ions on the hydration of calcium sulfoaluminate cement. Cem Concr Res. 2017;97:50–60.CrossRefGoogle Scholar
  33. 33.
    Sánchez-Herrero MJ, Fernández-Jiménez A, Palomo A. C4A3S hydration in different alkaline media. Cem Concr Res. 2013;46:41–9.CrossRefGoogle Scholar
  34. 34.
    Zhang G, Li G, Li Y. Effects of superplasticizers and retarders on the fluidity and strength of sulphoaluminate cement. Constr Build Mater. 2016;126:44–54.CrossRefGoogle Scholar
  35. 35.
    Zajac M, Skocek J, Bullerjahn F, Ben Haha M. Effect of retarders on the early hydration of calcium-sulpho-aluminate (CSA) type cements. Cem Concr Res. 2016;84:62–75.CrossRefGoogle Scholar
  36. 36.
    Winnefeld F, Klemm S. Influence of citric acid on the hydration kinetics of calcium sulfoaluminate cement. In: Proceedings of the first international conference on sulphoaluminate cement, Wuhan, 2013, p. 288–308.Google Scholar
  37. 37.
    Zhang Y, Zhang ZH, Li WF, Wang H, Shen XD. Welan gum retards the hydration of calcium sulfoaluminate. J Therm Anal Calorim. 2017;130(2):899–908.CrossRefGoogle Scholar
  38. 38.
    Patural L, Marchal P, Govin A, Grosseau P, Ruot B, Deväs O. Cellulose ethers influence on water retention and consistency in cement-based mortars. Cem Concr Res. 2011;41(1):46–55.CrossRefGoogle Scholar
  39. 39.
    Bülichen D, Kainz J, Plank J. Working mechanism of methyl hydroxyethyl cellulose (MHEC) as water retention agent. Cem Concr Res. 2012;42(7):953–9.CrossRefGoogle Scholar
  40. 40.
    Petit JY, Wirquin E. Evaluation of various cellulose ethers performance in ceramic tile adhesive mortars. Inter J Adhes Adhes. 2013;40:202–9.CrossRefGoogle Scholar
  41. 41.
    Knapen E, Van Gemert D. Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem Concr Res. 2009;39(1):6–13.CrossRefGoogle Scholar
  42. 42.
    Ou ZH, Ma BG, Jian SW. Influence of cellulose ethers molecular parameters on hydration kinetics of Portland cement at early ages. Constr Build Mater. 2012;33(3):78–83.CrossRefGoogle Scholar
  43. 43.
    Ciobanu C, Lazau I, Pacurariu C. Investigation of the cellulose ethers effect on the Portland cement hydration by thermal analysis. J Therm Anal Calorim. 2013;112(1):325–30.CrossRefGoogle Scholar
  44. 44.
    Zhang GF, Zhao JB, Wang PM, Xu LL. Effect of HEMC on the early hydration of Portland cement highlighted by isothermal calorimetry. J Therm Anal Calorim. 2015;119(3):1833–43.CrossRefGoogle Scholar
  45. 45.
    Zhang L, Glasser FP. Hydration of calcium sulfoaluminate cement at less than 24 h. Adv Cem Res. 2002;14(4):141–55.CrossRefGoogle Scholar
  46. 46.
    Winnefeld F, Lothenbach B. Hydration of calcium sulfoaluminate cements-experimental findings and thermodynamic modeling. Cem Concr Res. 2010;40(8):1239–47.CrossRefGoogle Scholar
  47. 47.
    Álvarez-Pinazo G, Cuesta A, García-Maté M, Santacruz I, Losilla ER, Sanfélix SG, Fauth F, Aranda MAG, De la Torre AG. In-situ early-age hydration study of sulfobelite cements by synchrotron powder diffraction. Cem Concr Res. 2014;56(S3–4):12–9.CrossRefGoogle Scholar
  48. 48.
    Lura P, Winnefeld F, Fang X. A simple method for determining the total amount of physically and chemically bound water of different cements. J Therm Anal Calorim. 2017;130(2):653–60.CrossRefGoogle Scholar
  49. 49.
    Nguyen DD, Devlin LP, Koshy P, Sorrell CC. Effects of acetic acid on early hydration of Portland cement. J Therm Anal Calorim. 2016;123(1):489–99.CrossRefGoogle Scholar
  50. 50.
    Bensted J, Barnes P. Structure and performance of cements. 2nd ed. New York: Spon Press; 2008.Google Scholar
  51. 51.
    Liu B, Wang SD, Chen YM, Gong CC, Lu LC. Effect of waste gypsum on the setting and early mechanical properties of belite-C2.75B1.25A3$ cement. J Therm Anal Calorim. 2016;125(1):75–83.CrossRefGoogle Scholar
  52. 52.
    Bizzozero J, Scrivener KL. Limestone reaction in calcium aluminate cement–calcium sulfate systems. Cem Concr Res. 2015;76:159–69.CrossRefGoogle Scholar
  53. 53.
    Kaufmann J, Winnefeld F, Lothenbach B. Stability of ettringite in CSA cement at elevated temperatures. Adv Cem Res. 2015;28(4):251–61.CrossRefGoogle Scholar
  54. 54.
    Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford Publishing; 1997.CrossRefGoogle Scholar
  55. 55.
    Matschei T, Lothenbach B, Glasser FP. The AFm phase in Portland cement. Cem Concr Res. 2007;37(2):118–30.CrossRefGoogle Scholar
  56. 56.
    Tang SW, Zhu HG, Li ZJ, Chen E, Shao HY. Hydration stage identification and phase transformation of calcium sulfoaluminate cement at early age. Constr Build Mater. 2015;75(1):11–8.CrossRefGoogle Scholar
  57. 57.
    Winnefeld F, Barlag S. Calorimetric and thermogravimetric study on the influence of calcium sulfate on the hydration of ye’elimite. J Therm Anal Calorim. 2010;101:949–57.CrossRefGoogle Scholar
  58. 58.
    Nguyen DD, Devlin LP, Koshy P, Sorrell CC. Impact of water-soluble cellulose ethers on polymer-modified mortars. J Mater Sci. 2014;49(3):923–51.CrossRefGoogle Scholar
  59. 59.
    Ridi F, Fratini E, Mannell F, Baglioni P. Hydration process of cement in the presence of a cellulosic additive: a calorimetric investigation. J Phys Chem B. 2005;109(30):14727–34.CrossRefGoogle Scholar
  60. 60.
    Telesca A, Marroccoli M, Pace ML, Tomasulo M, Valenti GL, Monteiro PJM. A hydration study of various calcium sulfoaluminate cements. Cem Concr Compos. 2014;53(10):224–32.CrossRefGoogle Scholar
  61. 61.
    Berger S, Coumes CCD, Bescop PL, Damidot D. Influence of a thermal cycle at early age on the hydration of calcium sulphoaluminate cements with variable gypsum contents. Cem Concr Res. 2011;41(2):149–60.CrossRefGoogle Scholar
  62. 62.
    Singh NK, Mishra PC, Singh VK, Narang KK. Effects of hydroxyethyl cellulose and oxalic acid on the properties of cement. Cem Concr Res. 2003;33(9):1319–29.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Key Laboratory of Advanced Civil Engineering Materials of Ministry of EducationTongji UniversityShanghaiChina
  2. 2.School of Materials Science and EngineeringTongji UniversityShanghaiChina

Personalised recommendations