Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 3, pp 2127–2136 | Cite as

Standard molar enthalpies of formation for crystalline vanillic acid, methyl vanillate and acetovanillone by bomb calorimetry method

  • Yuri MaksimukEmail author
  • Zoya Antonava
  • Dmitry Ponomarev
  • Alesia Sushkova


The massic energies of combustion for three crystalline monosubstituted guaiacols such as vanillic acid, methyl vanillate and acetovanillone were determined by using bomb calorimeter method and were found to be − (21,070.3 ± 8.6), − (23,352.3 ± 7.4) and − (26,732.2 ± 5.2) J g−1, respectively. The standard molar enthalpy of combustion and standard molar enthalpy of formation in the crystalline state at 298.15 K were calculated. They are − (3542.9 ± 1.5) and − (748.5 ± 1.8) kJ mol−1 for vanillic acid, − (4255.4 ± 1.7) and − (715.3 ± 2.1) kJ mol−1 for methyl vanillate, − (4444.7 ± 0.9) and − (526.1 ± 1.5) kJ mol−1 for acetovanillone, respectively. The basic contribution in a value of standard molar enthalpy of formation for oxygen-containing aromatic compounds provides the replacement of the hydrogen atom in the benzene ring to the oxygen-containing group. The calculation of these contributions gives the following values for the crystalline state at 298.15 K for substituents CHO − (150 ± 6), COCH3 − (201 ± 4), COOCH3 − (392 ± 6) and COOH − (428 ± 4) kJ mol−1. The differences in contributions for crystalline and gaseous states were estimated for groups CHO, COOCH3, COCH3 − (26 ± 3) kJ mol−1 in monosubstitute benzene derivatives, 4-substituted anisoles and guaiacols, − (35 ± 4) kJ mol−1 in 4-substituted phenols and for group COOH − (50 ± 3) kJ mol−1 in all abovementioned groups of compounds. More higher differences in contributions found for 4-substituted phenols and benzenecarboxylic acids are attributed to the hydrogen bonds formation in crystalline state of these derivatives.


Vanillic acid Methyl vanillate Acetovanillone Bomb calorimetry Energy of combustion Enthalpy of formation Group additivity 


  1. 1.
    Xu C, Ferdosian F. Conversion of lignin into bio-based chemicals and materials. Green chemistry and sustainable technology. Berlin: Springer; 2017.Google Scholar
  2. 2.
    Prakash A, Singh R, Balagurumurthy B, Bhaskar T, Arora AK, Puri SK. Thermochemical valorization of lignin. In: Pandey A, Bhaskar T, Stöcker M, Sukumaran R, editors. Advances in thermochemical conversion of biomass, chapter 16. New York: Elsevier; 2015. p. 455–78.CrossRefGoogle Scholar
  3. 3.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev. 2010;110(6):3552–99.CrossRefGoogle Scholar
  4. 4.
    Fang Z, Jr Smith, Richard L, editors. Production of biofuels and chemicals from lignin. Singapore: Springer; 2016.Google Scholar
  5. 5.
    Jung KA, Woo SH, Lim S-R, Park JM. Pyrolytic production of phenolic compounds from the lignin residues of bioethanol processes. Chem Eng J. 2015;259:107–16.CrossRefGoogle Scholar
  6. 6.
    Peng C, Zhang G, Yue J, Xu G. Pyrolysis of lignin for phenols with alkaline additive. Fuel Process Technol. 2014;124:212–21.CrossRefGoogle Scholar
  7. 7.
    Lou R, Wu S, Lyu G. Quantified monophenols in the bio-oil derived from lignin fast pyrolysis. J Anal Appl Pyrol. 2015;111(1):27–32.CrossRefGoogle Scholar
  8. 8.
    Kang S, Li X, Fan J, Chang J. Hydrothermal conversion of lignin: a review. Renew Sustain Energy Rev. 2013;27(11):546–58.CrossRefGoogle Scholar
  9. 9.
    Ponomarenko J, Dizhbite T, Lauberts M, Volperts A, Telysheva G. Analytical pyrolysis—a tool for revealing of lignin structure-antioxidant activity relationship. J Anal Appl Pyrol. 2015;113(5):360–9.CrossRefGoogle Scholar
  10. 10.
    Beckham GT, Johnson CW, Karp EM, Salvachua D, Vardon DR. Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol. 2016;42:40–53.CrossRefGoogle Scholar
  11. 11.
    Feofilova EP, Mysyakina IS. Lignin: chemical structure, biodegradation, and practical application (a review). Appl Biochem Microbiol. 2016;52(6):573–81.CrossRefGoogle Scholar
  12. 12.
    Cheng F, Brewer CE. Producing jet fuel from biomass lignin: potential pathways to alkyl-benzenes and cycloalkanes. Renew Sustain Energy Rev. 2017;72(5):673–722.CrossRefGoogle Scholar
  13. 13.
    Upton BM, Kasko AM. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev. 2016;116(4):2275–306.CrossRefGoogle Scholar
  14. 14.
    Naseem A, Tabasum S, Zia KM, Zuber M, Noree A. Lignin-derivatives based polymers, blends and composites: a review. Int J Biol Macromol Part A. 2016;93(12):296–313.CrossRefGoogle Scholar
  15. 15.
    Azadi P, Inderwildi OR, Farnood R, King DA. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev. 2013;21:506–23.CrossRefGoogle Scholar
  16. 16.
    Bajpai P. Value-Added Products from Lignin. In: Bajpai P, editor. Biotechnology for pulp and paper processing. Singapore: Springer; 2018. p. 561–71.CrossRefGoogle Scholar
  17. 17.
    Lupoi JS, Singh S, Parthasarathi R, Simmons BA, Henry RJ. Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renew Sustain Energy Rev. 2015;49(6):871–906.CrossRefGoogle Scholar
  18. 18.
    Ribeiro da Silva MDMC, Gonçalves MV, Monte MJS. Thermodynamic study on hydroxybenzaldehyde derivatives: 3- and 4-hydroxybenzaldehyde isomers and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. J Chem Thermodyn. 2010;42(4):472–7.CrossRefGoogle Scholar
  19. 19.
    Pinto SS, Diogo HP, Guedes RC, Costa Cabral BJ, Minas da Piedade ME, Martinho Simões JA. Energetics of hydroxybenzoic acids and of the corresponding carboxyphenoxyl radicals. Intramolecular hydrogen bonding in 2-hydroxybenzoic acid. J Phys Chem A. 2005;109(42):9700–8.CrossRefGoogle Scholar
  20. 20.
    Almeida ARRP, Cunha AFG, Matos MAR, Morais VMF, Monte MJS. Thermodynamic properties of the methyl esters of p-hydroxy and p-methoxy benzoic acids. J Chem Thermodyn. 2014;78(11):43–57.CrossRefGoogle Scholar
  21. 21.
    Bernardes CES, Piedade MFM, Minas da Piedade ME. Polymorphism in 4′-hydroxyacetophenone: structure and energetics. Cryst Growth Des. 2008;8(7):2419–30.CrossRefGoogle Scholar
  22. 22.
    Dávalos JZ, Herrero R, Chana A, Guerrero A, Jiménez P, Santiuste JM. Energetics and structural properties, in the gas phase, of trans-hydroxycinnamic acids. J Phys Chem A. 2012;116:2261–7.CrossRefGoogle Scholar
  23. 23.
    Maksimuk Y, Ponomarev D, Sushkova A, Krouk V, Vasarenko I, Antonava Z. Standard molar enthalpy of formation of vanillin. J Therm Anal Calorim. 2018;131:1721–33.CrossRefGoogle Scholar
  24. 24.
    Freitas VLS, Lima ACMO, Sapei E, Ribeiro da Silva MDMC. Comprehensive thermophysical and thermochemical studies of vanillyl alcohol. J Chem Thermodyn. 2016;102:287–92.CrossRefGoogle Scholar
  25. 25.
    Emel′yanenko VN, Yermalayeu AV, Voges M, Held C, Sadowski G, Verevkin SP. Thermodynamics of a model biological reaction: a comprehensive combined experimental and theoretical study. Fluid Phase Equilib. 2016;422:99–110.CrossRefGoogle Scholar
  26. 26.
    Zhang G, Wen Y, Liu Z, Zhang S, Li G. Acid-catalyzed hydrolysis of conifer lignosulfonate in black liquor for the production of value-added chemicals. Appl Catal A Gen. 2017;542(7):1–9.Google Scholar
  27. 27.
    Zhao W, Simmons B, Singh S, Ragauskas A, Cheng G. From lignin association to nano-/micro-particle preparation: extracting higher value of lignin. Green Chem. 2016;18:5693–700.CrossRefGoogle Scholar
  28. 28.
    Riganti C, Costamagna C, Bosia A, Ghigo D. The NADPH oxidase inhibitor apocynin (acetovanillone) induces oxidative stress. Toxicol Appl Pharmacol. 2006;212(3):179–87.CrossRefGoogle Scholar
  29. 29.
    Wang Y, Luo X, Pan H, Huang W, Wang X, Wen H, Shen K, Jin B. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism. Food Chem Toxicol. 2015;83:251–60.CrossRefGoogle Scholar
  30. 30.
    Lin CH, Chou YC, Shiao WF, Wang MW. High temperature, flame-retardant, and transparent epoxy thermosets prepared from an acetovanillone-based hydroxyl poly(ether sulfone) and commercial epoxy resins. Polymer. 2016;97:300–8.CrossRefGoogle Scholar
  31. 31.
    Li J, Zhang Q, Hu W, Yang X, He H. Stability of phenolic acids and the effect on weed control activity. J Korean Soc Appl Biol Chem. 2015;58(6):919–26.CrossRefGoogle Scholar
  32. 32.
    Gullón B, Eibes G, Moreira MT, Dávila I, Labidi J, Gullón P. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Ind Crops Prod. 2017;107:105–13.CrossRefGoogle Scholar
  33. 33.
    Noubigh A, Abderrabba M. Solid–liquid phase equilibrium and thermodynamic properties of vanillic acid in different pure solvents. J Mol Liq. 2016;223:261–6.CrossRefGoogle Scholar
  34. 34.
    Vishnu KV, Chatterjee NS, Ajeeshkumar KK, Lekshmi RGK, Tejpal CS, Mathew S, Ravishankar CN. Microencapsulation of sardine oil: application of vanillic acid grafted chitosan as a bio-functional wall material. Carbohydr Polym. 2017;174:540–8.CrossRefGoogle Scholar
  35. 35.
    Xu B, Xu X, Zhang C, Zhang Y, Wu G, Yan M, Jia M, Xie T, Jia X, Wang P, Lei H. Synthesis and protective effect of new ligustrazine-vanillic acid derivatives against CoCl2-induced neurotoxicity in differentiated PC12 cells. Chem Cent J. 2017;11:20.CrossRefGoogle Scholar
  36. 36.
    Sindhu G, Nishanthi E, Sharmila R. Nephroprotective effect of vanillic acid against cisplatin induced nephrotoxicity in wistar rats: a biochemical and molecular study. Environ Toxicol Pharmacol. 2015;39(1):392–404.CrossRefGoogle Scholar
  37. 37.
    Singh JCH, Kakalij RM, Kshirsagar RP, Kumar BH, Komakula SSB, Diwan PV. Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharm Biol. 2015;53:630–6.CrossRefGoogle Scholar
  38. 38.
    Llevot A, Grau E, Carlotti S, Grelier H, Cramail H. From lignin-derived aromatic compounds to novel biobased polymers. Macromol Rapid Commun. 2016;37:9–28.CrossRefGoogle Scholar
  39. 39.
    Slayden SW, Liebman JF. Thermochemistry of phenol and related arenols. In: Rappoport Z, editor. The chemistry of phenols. Chichester: Wiley; 2003. p. 223–58.CrossRefGoogle Scholar
  40. 40.
    Bernardes CES, Minas da Piedade ME. Energetics of the O − H bond and of intramolecular hydrogen bonding in HOC6H4C(O)Y (Y=H, CH3, CH2CH=CH2, C≡CH, CH2F, NH2, NHCH3, NO2, OH, OCH3, OCN, CN, F, Cl, SH, and SCH3) compounds. J Phys Chem A. 2008;112(40):10029–39.CrossRefGoogle Scholar
  41. 41.
    Alvareda E, Denis PA, Iribarne F, Paulino M. Bond dissociation energies and enthalpies of formation of flavonoids: a G4 and M06-2X investigation. Comput Theor Chem. 2016;1091:18–23.CrossRefGoogle Scholar
  42. 42.
    Varfolomeev MA, Abaidullina DI, Solomonov BN, Verevkin SP, Emel’yanenko VN. Pairwise substitution effects, inter- and intramolecular hydrogen bonds in methoxyphenols and dimethoxybenzenes. Thermochemistry, calorimetry, and first-principles calculations. J Phys Chem B. 2010;114(49):16503–16.CrossRefGoogle Scholar
  43. 43.
    Matos MAR, Miranda MS, Morais VMF. Calorimetric and theoretical determination of standard enthalpies of formation of dimethoxy-and trimethoxybenzene isomers. J Phys Chem A. 2000;104(40):9260–5.CrossRefGoogle Scholar
  44. 44.
    Matos MAR, Miranda MS, Morais VMF. Thermochemical study of the methoxy-and dimethoxyphenol isomers. J Chem Eng Data. 2003;48(3):669–79.CrossRefGoogle Scholar
  45. 45.
    Verevkin SP, Kozlova SA. Di-hydroxybenzenes: catechol, resorcinol, and hydroquinone: enthalpies of phase transitions revisited. Thermochim Acta. 2008;471(1–2):33–42.CrossRefGoogle Scholar
  46. 46.
    Verevkin SP, Schick C. Determination of vapor pressures, enthalpies of sublimation, and enthalpies of fusion of benzenetriols. Thermochim Acta. 2004;415(1–2):35–42.CrossRefGoogle Scholar
  47. 47.
    Ribeiro Da Silva MDMC, Ribeiro Da Silva MAV, Pilcher G. Enthalpies of combustion of the three trihydroxybenzenes and of 3-methoxycatechol and 4-nitrocatechol. J Chem Thermodyn. 1986;18:295–300.CrossRefGoogle Scholar
  48. 48.
    Hou Y, Hu S, Lindström ME, Li J. Feasibility of monomer aromatic substances as calibration standards for lignin quantitative analyses in pyrolysis-GCMS. J Anal Appl Pyrol. 2013;101:232–7.CrossRefGoogle Scholar
  49. 49.
    Benson S. Thermochemical kinetics: methods for the estimation of thermochemical data and rate parameters. 1st ed. New York: Wiley; 1968.Google Scholar
  50. 50.
    Benson SW, Crickshank FR, Golden DM, Haugen GR, O’Neal HE, Rogers AS, Shaw R, Walsh R. Additivity rules for the estimation of thermochemical properties. Chem Rev. 1969;69(3):279–324.CrossRefGoogle Scholar
  51. 51.
    Verevkin SP. Improved Benson increments for the estimation of standard enthalpies of formation and enthalpies of vaporization of alkyl ethers, acetals, ketals, and ortho esters. J Chem Eng Data. 2002;47:1071–97.CrossRefGoogle Scholar
  52. 52.
    Verevkin SP, Emel’yanenko VN, Diky VV, Muzny CD, Chirico RD, Frenkel M. New group-contribution approach to thermochemical properties of organic compounds: hydrocarbons and oxygen-containing compounds. J Phys Chem Ref Data. 2013;42(3):033102-1–-33.CrossRefGoogle Scholar
  53. 53.
    Mó O, Yáñez M, Elguero J, Roux MV, Jiménez P, Dávalos JZ, Ribeiro da Silva MAV, Ribeiro da Silva MDMC, Cabildo P, Claramunt R. Substituent effects on enthalpies of formation: benzene derivatives. J Phys Chem A. 2003;107(3):366–71.CrossRefGoogle Scholar
  54. 54.
    Albahri TA. Method for predicting the standard net heat of combustion for pure hydrocarbons from their molecular structure. Energy Convers Manag. 2013;76:1143–9.CrossRefGoogle Scholar
  55. 55.
    Wieser ME. Atomic weights of the elements 2011 (IUPAC Technical Report). Pure Appl Chem. 2013;85:1047–78.CrossRefGoogle Scholar
  56. 56.
    Korchagina EN. Metrological characteristics of K-1 and K-3 reference benzoic acids. Meas Tech. 2001;44:1138–42.CrossRefGoogle Scholar
  57. 57.
    Hubbard WN, Scott DW, Waddington G. Reduction to standard states (at 25 °C) of bomb calorimetric data for compounds of carbon, hydrogen, oxygen and sulphur. J Phys Chem. 1954;58:152–62.CrossRefGoogle Scholar
  58. 58.
    Alexandrov YuJ, Oleynic BN, Usvyatseva TR. [Reduction to standard thermodynamic states of heat combustion for C,H,O organic compounds]. Trudy metrologicheskih institutov SSSR. Izd. Standartov: Moscow-Leningrad. 1971;189:155–77 (in Russian). Google Scholar
  59. 59.
    Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL. The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units. J Phys Chem Ref Data. 1982;11(Suppl.2):2–65.Google Scholar
  60. 60.
    Cox JD, Wagman DD, Medvedev VA. CODATA key values for thermodynamics. New York: Hemisphere Publishing Corp; 1979.Google Scholar
  61. 61.
    Gharagheizi F, Mirkhani SA. Mahyari A-RT. Prediction of standard enthalpy of combustion of pure compounds using a very accurate group-contribution based method. Energy Fuels. 2011;25:2651–4.CrossRefGoogle Scholar
  62. 62.
    Holmes JL, Aubry C. Group additivity values for estimating the enthalpy of formation of organic compounds: an update and reappraisal. 2. C, H, N, O, S, and halogens. J Phys Chem A. 2012;116:7196–209.CrossRefGoogle Scholar
  63. 63.
    Benson S. Thermochemical kinetics. 2nd ed. New York: Wiley; 1976.Google Scholar
  64. 64.
    Cohen N, Benson SW. Estimation of heats of formation of organic compounds by additivity methods. Chem Rev. 1993;93:2419–38.CrossRefGoogle Scholar
  65. 65.
    Domalski ES, Hearing ED. Estimation of the thermodynamic properties of C-H–N–O–S-Halogen compounds at 298.15 K. J Phys Chem Ref Data. 1993;22(4):805–1159.CrossRefGoogle Scholar
  66. 66.
    Cohen N. Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds. J Phys Chem Ref Data. 1996;25:1411–81.CrossRefGoogle Scholar
  67. 67.
    Roux MV, Temprado M, Chickos JS, Nagano Y. Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data. 2008;37(4):1855–996.CrossRefGoogle Scholar
  68. 68.
    Pedley JB. Thermochemical data of organic compounds. Thermodynamics Research Center (TRC), College Station, Texas: TRC Data Series; 1994.Google Scholar
  69. 69.
    Simões RG, Agapito F, Diogo HP, Minas da Piedade ME. Enthalpy of formation of anisole: implications for the controversy on the O–H bond dissociation enthalpy in phenol. J Phys Chem A. 2014;118(46):11026–32.CrossRefGoogle Scholar
  70. 70.
    Ambrose D, Connett JE, Green JHS, Hales JL, Head AJ, Martin JF. Thermodynamic properties of organic oxygen compounds. 42. Physical and thermodynamic properties of benzaldehyde. J Chem Thermodyn. 1975;7:1143–57.CrossRefGoogle Scholar
  71. 71.
    Colomina M, Latorre C, Perez-Ossorio R. Heats of combustion of five alkyl phenyl ketones. Pure Appl Chem. 1961;2:133–5.CrossRefGoogle Scholar
  72. 72.
    Steele WV, Chirico RD, Cowell AB, Knipmeyer SE, Nguyen A. Thermodynamic properties and ideal-gas enthalpies of formation for methyl benzoate, ethyl benzoate, (R)-(+)-limonene, tert-amyl methyl ether, trans-crotonaldehyde, and diethylene glycol. J Chem Eng Data. 2002;47(4):667–88.CrossRefGoogle Scholar
  73. 73.
    Amaral LMPF, Morais VMF, Ribeiro da Silva MAV. Standard molar enthalpy of formation of methoxyacetophenone isomers. J Chem Thermodyn. 2014;74(7):22–31.CrossRefGoogle Scholar
  74. 74.
    Colomina M, Jiménez P, Roux MV, Turrión C. Thermochemical properties of benzoic acid derivatives VII. Enthalpies of combustion and formation of the o-, m-, and p-methoxybenzoic acids. J Chem Thermodyn. 1978;10(7):661–5.CrossRefGoogle Scholar
  75. 75.
    Verevkin SP, Zaitsau DH, Emeĺyanenko VN, Stepurko EN, Zherikova KV. Benzoic acid derivatives: evaluation of thermochemical properties with complementary experimental and computational methods. Thermochim Acta. 2015;622:18–30.CrossRefGoogle Scholar
  76. 76.
    Lee M-J, Lien P-J, Huang W-K. Solid-liquid equilibria for binary mixtures containing cresols, ethylenediamine, and anisole. Ind Eng Chem Res. 1994;33(11):2853–8.CrossRefGoogle Scholar
  77. 77.
    Goates JR, Boerio-Goates J, Goates SR, Ott JB. (Solid + liquid) phase equilibria for (N, N-dimethylacetamide + tetrachloromethane): enthalpies of melting of pure components and enthalpies for formation of molecular addition compounds from phase equilibria. J Chem Thermodyn. 1987;19(1):103–7.CrossRefGoogle Scholar
  78. 78.
    Sedláková Z, Malijevská I, Rehák K, Vrbka P. Solid–liquid and liquid–liquid equilibrium in the formamide-acetophenone system. Collect Czech Chem Commun. 2006;71(9):1350–8.CrossRefGoogle Scholar
  79. 79.
    Blokhin AV, Paulechka YU, Kabo GJ, Kozyro AA. Thermodynamic properties of methyl esters of benzoic and toluic acids in the condensed state. J Chem Thermodyn. 2002;34(1):29–55.CrossRefGoogle Scholar
  80. 80.
    Tabernero A, del Valle EMM, Galán MA. An empirical analysis of the solubility of pharmaceuticals in supercritical carbon dioxide using sublimation enthalpies. Ind Eng Chem Res. 2013;52(51):18447–57.CrossRefGoogle Scholar
  81. 81.
    Khursan SL. Comparative analysis of theoretical methods for the determination of thermochemical parameters of organic compounds. Vestn Bashkirskogo Univ. 2014;19(2):395–402 (in Russian).Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Research Institute for Physical Chemical Problems of the Belarusian State UniversityMinskBelarus
  2. 2.Saint Petersburg State Forest Technical UniversitySaint-PetersburgRussia

Personalised recommendations