Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 2, pp 1061–1073 | Cite as

Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder

  • Milad Shirazi
  • Alireza ShateriEmail author
  • Morteza Bayareh


In the present paper, mixed convection heat transfer of water–Al2O3 nanofluid in the space between two cylinders is investigated numerically. The inner and outer cylinders are at Tc and Th temperatures, respectively. The forced and free convective heat transfers are due to the internal cylinder rotation and temperature difference between the two cylindrical surfaces, respectively. The effect of dimensionless parameters such as Rayleigh and Richardson numbers, the volume fraction of nanofluid, the eccentricity ratio and its angle on heat transfer ratio is analyzed. The governing equations are solved using a finite-difference method and SIMPLE algorithm. The results show that at eccentricity of ε = 0.0 and 0.5 and within the entire range of Rayleigh number 103 ≤ Ra ≤ 105 and Richardson number 0.1 ≤ Ri ≤ 100, an increase in Rayleigh and Richardson numbers leads to an increase in average Nusselt number on the inner cylinder wall. But at eccentricity of ε = 0.9, the average Nusselt number on the inner cylinder wall decreases with these dimensionless parameters. It is found that an increase in the volume fraction of the nanofluid results in an increase in average Nusselt number on the inner cylinder wall.


Mixed convection heat transfer Nanofluid Eccentricity Nusselt number Rayleigh number Richardson number 

List of symbols


Specific heat capacity at constant (J Kg−1 K−1)


Cylinder diameter (m)


Gravitational acceleration (m s−2)


Grashof number


Heat conductivity coefficient (W m−1 k−1)


Specific length (m)


Local Nusselt number


Dimensionless pressure


Péclet number


Prandtl number


Heat transfer rate


Radial coordinate


Dimensionless radial coordinate


Rayleigh number


Reynolds number


Richardson number


Radial ratio


Wall temperature (K)


Velocity in radial direction (m s−1)


Velocity in perimeter direction (m s−1)


Dimensionless velocity in radial direction


Dimensionless velocity in perimeter direction

Greek letters


Heat diffusion coefficient (m2 s−1)


Thermal diffusion coefficient (k−1)


Dimensionless eccentricity


Angular coordinate


Volume fraction of nanofluid


Kinematic viscosity (m2 s−1)


Dynamic viscosity (kg m−1 s−1)


Angular velocity (rad s−1)


Density (kg m−3)


Dimensionless temperature


  1. 1.
    Barbes B, Paramo R, Blanco E, Pastoriza-Gallege MJ, Pineiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurement of Al2O3 nanofluids. J Therm Anal Calorim. 2013;111:1615–25.CrossRefGoogle Scholar
  2. 2.
    Kumar BR, Basheer NS, Jacon S, Kurian A, George SD. Thermal-lens probing of the enhanced thermal diffusivity of gold nanofluid-ethylene glycol mixture. J Therm Anal Calorim. 2015;119:453–60.CrossRefGoogle Scholar
  3. 3.
    Jbeili M, Wang G, Zhang J. Evaluation of thermal and power performances of nanofluid flows through square in-line cylinder arrays. J Therm Anal Calorim. 2017;129:1923–34.CrossRefGoogle Scholar
  4. 4.
    Sheikholeslami M, Shamlooei M, Moradi R. Fe3O4-ethylene glycol nanofluid forced convection inside a porous enclosure in existence of Coulomb force. J Mol Liq. 2018;249:429–37.CrossRefGoogle Scholar
  5. 5.
    Sheikholeslami M. Numerical investigation for CuO–H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.CrossRefGoogle Scholar
  6. 6.
    Sheikholeslami M. CuO-water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.CrossRefGoogle Scholar
  7. 7.
    Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.CrossRefGoogle Scholar
  8. 8.
    Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.CrossRefGoogle Scholar
  9. 9.
    Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.CrossRefGoogle Scholar
  10. 10.
    Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.CrossRefGoogle Scholar
  11. 11.
    Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.CrossRefGoogle Scholar
  12. 12.
    Deng QH. Fluid flow and heat transfer characteristics of natural convection in square cavities due to discrete source–sink pairs. Int J Heat Mass Transf. 2008;51:5949–57.CrossRefGoogle Scholar
  13. 13.
    Mohamad AA, Kuzmin A. A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int J Heat Mass Transf. 2010;53:990–6.CrossRefGoogle Scholar
  14. 14.
    Ghaddar NK. Natural convection heat transfer between a uniformly heated cylindrical element and its rectangular enclosure. Int J Heat Mass Transf. 1992;35:2327–34.CrossRefGoogle Scholar
  15. 15.
    Holzbecher M, Steiff A. Laminar and turbulent free convection in vertical cylinders with internal heat generation. Int J Heat Mass Transf. 1995;38:2893–903.CrossRefGoogle Scholar
  16. 16.
    Kao PH, Yang RJ. Simulating oscillatory flows in Rayleigh–Benard convection using the lattice Boltzmann method. Int J Heat Mass Transf. 2007;50:3315–28.CrossRefGoogle Scholar
  17. 17.
    Zeng-Yuan G, Chao-Min Z. Thermal drive in centrifugal fields—mixed convection in a vertical rotating cylinder. Int J Heat Mass Transf. 1992;35:1635–44.CrossRefGoogle Scholar
  18. 18.
    El-Shaarawi MAI, Khamis M. Induced flow in uniformly heated vertical annuli with rotating inner walls. Numer Heat Transf Part A Appl. 1987;12:493–508.Google Scholar
  19. 19.
    Hessami MA, Davis GDV, Leonardi E, Reizes JA. Mixed convection in vertical, cylindrical annuli. Int J Heat Mass Transf. 1987;30:151–64.CrossRefGoogle Scholar
  20. 20.
    Singh SK, Jha BK, Singh AK. Natural convection in vertical concentric annuli under a radial magnetic field. Heat Mass Transf. 1997;32:399–401.CrossRefGoogle Scholar
  21. 21.
    Yoo JS. Mixed convection of air between two horizontal concentric cylinders with a cooled rotating outer cylinder. Int J Heat Mass Transf. 1998;41:293–302.CrossRefGoogle Scholar
  22. 22.
    Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci. 2013;44:483–9.CrossRefGoogle Scholar
  23. 23.
    Kayhani MH, Soltanzadeh H, Heyhat MM, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf. 2012;39:456–62.CrossRefGoogle Scholar
  24. 24.
    Yu ZT, Xu X, Hu YC, Fan LW, Cen KF. A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a horizontal concentric annulus. Int J Heat Mass Transf. 2012;55:1141–8.CrossRefGoogle Scholar
  25. 25.
    Matin MH, Khan WA. Laminar natural convection of non-Newtonian power-law fluids between concentric circular cylinders. Int Commun Heat Mass Transf. 2013;43:112–21.CrossRefGoogle Scholar
  26. 26.
    Cianfrini M, Corcione M, Quintino A. Natural convection heat transfer of nanofluids in annular spaces between horizontal concentric cylinders. Appl Therm Eng. 2011;31:4055–63.CrossRefGoogle Scholar
  27. 27.
    Matin MH, Pop I. Natural convection flow and heat transfer in an eccentric annulus filled by Copper nanofluid. Int J Heat Mass Transf. 2013;61:353–64.CrossRefGoogle Scholar
  28. 28.
    Moghari RM, Akbarinia A, Shariat M, Talebi F, Laur R. Two phase mixed convection Al2O3—water nanofluid flow in an annulus. Int J Multiph Flow. 2011;37:585–95.CrossRefGoogle Scholar
  29. 29.
    Khanafer K, Chamkha AJ. Mixed convection within a porous heat generating horizontal annulus. Int J Heat Mass Transf. 2003;46:1725–35.CrossRefGoogle Scholar
  30. 30.
    Mirmasoumi S, Behzadmehr A. Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl Therm Eng. 2008;28:717–27.CrossRefGoogle Scholar
  31. 31.
    Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35:657–65.CrossRefGoogle Scholar
  32. 32.
    Arefmanesh A, Amini M, Mahmoodi M, Najafi M. Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid. Eur J Mech. 2012;33:95–104.CrossRefGoogle Scholar
  33. 33.
    Teamah MA, El-Maghlany WM. Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int J Therm Sci. 2012;58:130–42.CrossRefGoogle Scholar
  34. 34.
    Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571–81.CrossRefGoogle Scholar
  35. 35.
    Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng. 2015;283:651–63.CrossRefGoogle Scholar
  36. 36.
    Kuehn TH, Goldstein RJ. An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J Fluid Mech. 1976;74:695–719.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Milad Shirazi
    • 1
  • Alireza Shateri
    • 1
    Email author
  • Morteza Bayareh
    • 1
  1. 1.Department of Mechanical EngineeringShahrekord UniversityShahrekordIran

Personalised recommendations