Fabrication of improved overall properties of poly (ethylene terephthalate) by simultaneous chain extension and crystallization promotion

Article
  • 27 Downloads

Abstract

In order to improve processing performance and mechanical properties, chain extension is commercially employed for poly (ethylene terephthalate) (PET). Poly (phenyl methylene isocyanate) (PMDI) with multi-reactive isocyanate groups (–NCO) is a qualified chain extender. However, the introduction of such compound impairs the crystallization properties of PET. Nucleating agent Surlyn® possesses good dispersion in PET, and it is commonly used to improve the crystallization rate of PET. The results showed that the intrinsic viscosity of PPET, representing PET chain-extended by 1.4 mass% PMDI, was enhanced from 0.60 dL g−1 of PET to 1.10 dL g−1. Surlyn significantly improved the crystallization rate of PET. The half crystallization time (t1/2) was decreased from 2.32 min of PPET to 0.74 min of SPPET, standing for PET blended with 1.4 mass% PMDI and 1.2 mass% Surlyn. Consequently, PMDI combined with Surlyn synergistically improved the comprehensive mechanical properties of PET, especially the notched impact strength from 29.2 J m−1 of PET to 45.2 J m−1 of SPPET.

Keywords

PET PMDI Surlyn Chain extension Crystallization rate 

Notes

Acknowledgements

We gratefully acknowledge the support from the projects for Academician workstation of Guangdong (2015B090904001) and Dongguan.

Supplementary material

10973_2018_7179_MOESM1_ESM.xlsx (46 kb)
Supplementary material 1 (XLSX 45 kb)
10973_2018_7179_MOESM2_ESM.pdf (883 kb)
Supplementary material 2 (PDF 882 kb)

References

  1. 1.
    Awaja F, Pavel D. Recycling of PET. Eur Polym J. 2005;41:1453–77.CrossRefGoogle Scholar
  2. 2.
    Zhang YJ, Zhang C, Li HQ, Du ZJ, Li CJ. Chain extension of poly (ethylene terephthalate) with bisphenol-A dicyanate. J Appl Polym Sci. 2010;117:2003–8.CrossRefGoogle Scholar
  3. 3.
    Tan ZY, Liu SC, Cui XL, Zhang HX. Application of macromolecular chain extender and contribution to the toughening of poly (ethylene terephthalate). J Therm Compos Mater. 2014;29:833–49.CrossRefGoogle Scholar
  4. 4.
    Xia T, Xi ZH, Liu T, Pan X, Fan CY, Zhao L. Melt foamability of reactive extrusion-modified poly (ethylene terephthalate) with pyromellitic dianhydride using supercritical carbon dioxide as blowing agent. Polym Eng Sci. 2015;55:1528–35.CrossRefGoogle Scholar
  5. 5.
    Japon S, Boogh L, Leterrier Y, Manson JAE. Reactive processing of poly (ethylene terephthalate) modified with multifunctional epoxy-based additives. Polymer. 2000;41:5809–18.CrossRefGoogle Scholar
  6. 6.
    Bikiaris DN, Karayannidis GP. Calorimetric study of diepoxide chain-extended poly (ethylene terephthalate). J Therm Anal Calorim. 1998;54:721–9.CrossRefGoogle Scholar
  7. 7.
    Torres N, Robin JJ, Boutevin B. Chemical modification of virgin and recycled poly (ethylene terephthalate) by adding of chain extenders during processing. J Appl Polym Sci. 2001;79:1816–24.CrossRefGoogle Scholar
  8. 8.
    Tang XW, Guo WH, Yin GR, Li BY, Wu CF. Reactive extrusion of recycled poly (ethylene terephthalate) with polycarbonate by addition of chain extender. J Appl Polym Sci. 2007;104:2602–7.CrossRefGoogle Scholar
  9. 9.
    Awaja F, Daver F, Kosior E, Cser F. The effect of chain extension on the thermal behaviour and crystallinity of reactive extruded recycled PET. J Therm Anal Calorim. 2004;104:865–84.CrossRefGoogle Scholar
  10. 10.
    Nascimento CR, Azuma C, Bretas RR, Farah M, Dias ML. Chain extension reaction in solid-state polymerization of recycled PET: the influence of 2,2′-bis-2-oxazoline and pyromellitic anhydride. J Appl Polym Sci. 2010;115:3177–88.CrossRefGoogle Scholar
  11. 11.
    Raffa P, Coltelli MB, Savi S, Bianchi S, Castelvetro V. Chain extension and branching of poly (ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: an experimental and modelling study. React Funct Polym. 2012;72:50–60.CrossRefGoogle Scholar
  12. 12.
    Agabekov V, Golubovich V, Pesetskii S. Effect of nanodisperse carbon fillers and isocyanate chain extender on structure and properties of poly (ethylene terephthalate). J Nanomater. 2012;2012:1–7.Google Scholar
  13. 13.
    Wang GL, Chen YH. Isothermal crystallization and spherulite morphology of poly (ethylene terephthalate)/Na+-MMT nanocomposites prepared through solidstate mechanochemical method. J Therm Anal Calorim. 2017.  https://doi.org/10.1007/s10973-017-6857-4.Google Scholar
  14. 14.
    Kim MW, Lee SH, Youn JR. Effects of filler size and content on shrinkage and gloss of injection molded PBT/PET/talc composites. Polym Compos. 2009;31:1020–7.CrossRefGoogle Scholar
  15. 15.
    Lee SJ, Hahm WG, Kikutani T, Kim BC. Effects of clay and POSS nanoparticles on the quiescent and shear-induced crystallization behavior of high molecular weight poly (ethylene terephthalate). Polym Eng Sci. 2009;49:317–23.CrossRefGoogle Scholar
  16. 16.
    Gao W, Wang Z, Zhao Z, Ding L, Zhu Y. Effect of barium sulfate on thermal stability and crystallization properties of poly (ethylene terephthalate). J Therm Anal Calorim. 2017;129:1047–55.CrossRefGoogle Scholar
  17. 17.
    Jiang XL, Luo SJ, Sun K, Chen XD. Effect of nucleating agents on crystallization kinetics of PET. Express Polym Lett. 2007;1:245–51.CrossRefGoogle Scholar
  18. 18.
    Yu Y, Yu YL, Jin MN, Bu HS. Nucleation mechanism and crystallization behavior of poly (ethylene terephthalate) containing ionomers. Macromol Chem Phys. 2000;201:1894–900.CrossRefGoogle Scholar
  19. 19.
    Yu Y, Bu HS. Crystallization behavior of poly (ethylene terephthalate) modified by ionomers. Macromol Chem Phys. 2001;202:421–5.CrossRefGoogle Scholar
  20. 20.
    Tang SD, Xin Z. Strucural effects of ionomers on the morphology, isothermal crystallization kinetics and melting behavior of PET/ionomers. Polymer. 2009;50:1054–61.CrossRefGoogle Scholar
  21. 21.
    Calcagno CIW, Mariani CM, Teixeira SR, Mauler RS. The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer. 2007;48:966–74.CrossRefGoogle Scholar
  22. 22.
    Wu TB, Ke YC. Preparation of silica–PS composite particles and their application in PET. Eur Polym J. 2006;42:274–85.CrossRefGoogle Scholar
  23. 23.
    Mekhilef N, Kadi AA, Ajji A. Blends of modified polycarbonate and high density polyethylene. Polym Eng Sci. 1992;32:894–902.CrossRefGoogle Scholar
  24. 24.
    Gui QD, Xin Z, Zhu WP, Dai GC. Effects of an organic phosphorus nucleating agent on crystallization behaviors and mechanical properties of poly(propylene). J Appl Polym Sci. 2003;88:297–301.CrossRefGoogle Scholar
  25. 25.
    Talbott MF, Springer GS, Berglund LA. The effects of crystallinity on the mechanical properties of PEEK polymer and graphite fiber reinforced PEEK. J Compos Mater. 1987;21:1056–81.CrossRefGoogle Scholar
  26. 26.
    Nagendra N, Ramamurty U, Goh TT, Li Y. Effect of crystallinity on the impact toughness of a La-based bulk metallic glass. Acta Mater. 2000;48:2603–15.CrossRefGoogle Scholar
  27. 27.
    Wang XD, Cui XG. Effect of ionomers on mechanical properties, morphology, and rheology of polyoxymethylene and its blends with methyl methacrylate–styrene–butadiene copolymer. Eur Polym J. 2005;41:871–80.CrossRefGoogle Scholar
  28. 28.
    Ma YL, Yang GP, Xie LS. Morphology, nonisothermal crystallization behavior and mechanical properties of polypropylene modified by ionomers. J Macromol Sci B. 2014;53:1829–45.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China
  2. 2.Silverage Engineering Plastics (Dongguan) Co., Ltd.DongguanPeople’s Republic of China

Personalised recommendations