Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 2, pp 869–879 | Cite as

CO2 adsorption and desorption properties of calcined layered double hydroxides

Effect of metal composition on the LDH structure
  • S. Colonna
  • M. Bastianini
  • M. Sisani
  • A. FinaEmail author


In this study, the CO2 adsorption properties of different metal mixed oxides (MMO) obtained by calcination of different layered double hydroxides (LDH) are addressed. Four types of LDH, with composition \(\left[{{\text{M}}_ {1 - {\text{x}}}^{2 +} {\text{M}}_{\text{x}}^{3 +} \left({\text{OH}} \right)_{2}} \right]^{{\text{x} +}} \cdot[{\text{A}}_{\text{x/n}}^{{\text{n} -}} \cdot {m}{\text{H}}_{2} {\text{O}}]^{{\text{x} -}},\) where M2+=Zn, Cu, Ni, M3+=Al, x = 0.33, n = 2 and A = CO 3 2− , were studied by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and thermogravimetric analysis coupled with mass spectrometry (TG-MS). Different thermal behaviors upon heating were observed depending on the LDH composition, resulting in the exploitation of different calcination temperatures to convert LDH into mixed metal oxides (MMO). MMO were exposed to ambient air or pure carbon dioxide atmosphere to evaluate CO2 adsorption properties. Aging in ambient condition leads to adsorption of both CO2 and water, from ambient moisture, with variable ratios depending on the MMO composition. Furthermore, all the MMO were demonstrated to be able to adsorb CO2 in pure gas stream, in the absence of moisture. In both ambient and pure CO2 conditions, the performance of MMO is strongly dependent on the metal composition of MMO. In particular, the presence of Cu in the structure turned out to be beneficial in terms of adsorption capacity, with a maximum mass gain for CuAl MMO of 4 and 15% in pure CO2 and in atmospheric conditions, respectively.


LDH MMO CO2 adsorption Chemisorption Physisorption 



This research work was funded by “ITACA” project of the POR-FESR “Competitività regionale e occupazione” 2007/2013, Asse 1, Misura I.1.1, “Piattaforme innovative” of the Piedmont Region (Italy). Prof. Matteo Pavese at Politecnico di Torino is acknowledged for providing access to TG-MS equipment. Authors gratefully acknowledge A. Petracci and R. Spogli at Prolabin & Tefarm S.r.l for SEM analysis and the useful discussions. Furthermore, Prof. Giovanni Camino at Politecnico di Torino is gratefully acknowledged for discussion and interpretation of results.

Supplementary material

10973_2018_7152_MOESM1_ESM.pdf (995 kb)
Supplementary material 1 (PDF 994 kb)


  1. 1.
    Leung DY, Caramanna G, Maroto-Valer MM. An overview of current status of carbon dioxide capture and storage technologies. Renew Sustain Energy Rev. 2014;39:426–43.CrossRefGoogle Scholar
  2. 2.
    Silva JA, Schumann K, Rodrigues AE. Sorption and kinetics of CO2 and CH4 in binderless beads of 13X zeolite. Microporous Mesoporous Mater. 2012;158:219–28.CrossRefGoogle Scholar
  3. 3.
    Wang L, Liu Z, Li P, Yu J, Rodrigues AE. Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process. Chem Eng J. 2012;197:151–61.CrossRefGoogle Scholar
  4. 4.
    Cheung O, Liu Q, Bacsik Z, Hedin N. Silicoaluminophosphates as CO2 sorbents. Microporous Mesoporous Mater. 2012;156:90–6.CrossRefGoogle Scholar
  5. 5.
    Yang R, Liu G, Li M, Zhang J, Hao X. Preparation and N2, CO2 and H2 adsorption of super activated carbon derived from biomass source hemp (Cannabis sativa L.) stem. Microporous Mesoporous Mater. 2012;158:108–16.CrossRefGoogle Scholar
  6. 6.
    Vargas DP, Giraldo L, Moreno-Piraján JC. CO2 adsorption on activated carbon honeycomb-monoliths: a comparison of Langmuir and Toth models. Int J Mol Sci. 2012;13(7):8388–97.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Correia LB, Fiuza RA, de Andrade RC, Andrade HM. CO2 capture on activated carbons derived from mango fruit (Mangifera indica L.) seed shells. J Therm Anal Calorim. 2017;131:1–8.Google Scholar
  8. 8.
    Giraldo L, Moreno-Piraján JC. CO2 adsorption on activated carbon prepared from mangosteen peel. J Therm Anal Calorim. 2017. Scholar
  9. 9.
    Yu J, Xie L-H, Li J-R, Ma Y, Seminario JM, Balbuena PB. CO2 capture and separations using MOFs: computational and experimental studies. Chem Rev. 2017;117(14):9674–754.CrossRefPubMedGoogle Scholar
  10. 10.
    Qi G, Fu L, Choi BH, Giannelis EP. Efficient CO2 sorbents based on silica foam with ultra-large mesopores. Energy Environ Sci. 2012;5(6):7368–75.CrossRefGoogle Scholar
  11. 11.
    Forano C, Hibino T, Leroux F, Taviot-Gueho C. 1 layered double hydroxides. Dev Clay Sci. 2006;1:1021–95.CrossRefGoogle Scholar
  12. 12.
    Hibino T, Yamashita Y, Kosuge K, Tsunashima A. Decarbonation behavior of Mg–Al–CO3 hydrotalcite-like compounds during heat treatment. Clays Clay Miner. 1995;43(4):427–32.CrossRefGoogle Scholar
  13. 13.
    Kloprogge JT, Frost RL. Fourier transform infrared and Raman spectroscopic study of the local structure of Mg-, Ni-, and Co-hydrotalcites. J Solid State Chem. 1999;146(2):506–15.CrossRefGoogle Scholar
  14. 14.
    Stanimirova T, Kirov G. Cation composition during recrystallization of layered double hydroxides from mixed (Mg, Al) oxides. Appl Clay Sci. 2003;22(6):295–301.CrossRefGoogle Scholar
  15. 15.
    Hutson ND, Speakman SA, Payzant EA. Structural effects on the high temperature adsorption of CO2 on a synthetic hydrotalcite. Chem Mater. 2004;16(21):4135–43.CrossRefGoogle Scholar
  16. 16.
    Kloprogge JT, Hickey L, Frost RL. FT-Raman and FT-IR spectroscopic study of synthetic Mg/Zn/Al-hydrotalcites. J Raman Spectrosc. 2004;35(11):967–74.CrossRefGoogle Scholar
  17. 17.
    Porta P, Morpurgo S. Cu/Zn/Co/Al/Cr-containing hydrotalcite-type anionic clays. Appl Clay Sci. 1995;10(1–2):31–44.CrossRefGoogle Scholar
  18. 18.
    Costantino U, Marmottini F, Sisani M, Montanari T, Ramis G, Busca G, et al. Cu–Zn–Al hydrotalcites as precursors of catalysts for the production of hydrogen from methanol. Solid State Ion. 2005;176(39):2917–22.CrossRefGoogle Scholar
  19. 19.
    Valente JS, Hernandez-Cortez J, Cantu MS, Ferrat G, López-Salinas E. Calcined layered double hydroxides Mg–Me–Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts. Catal Today. 2010;150(3):340–5.CrossRefGoogle Scholar
  20. 20.
    Di Fronzo A, Pirola C, Comazzi A, Galli F, Bianchi C, Di Michele A, et al. Co-based hydrotalcites as new catalysts for the Fischer–Tropsch synthesis process. Fuel. 2014;119:62–9.CrossRefGoogle Scholar
  21. 21.
    Węgrzyn A, Rafalska-Łasocha A, Majda D, Dziembaj R, Papp H. The influence of mixed anionic composition of Mg–Al hydrotalcites on the thermal decomposition mechanism based on in situ study. J Therm Anal Calorim. 2009;99(2):443–57.CrossRefGoogle Scholar
  22. 22.
    Tao Q, He H, Frost RL, Yuan P, Zhu J. Thermal decomposition of silylated layered double hydroxides. J Therm Anal Calorim. 2010;101(1):153–9.CrossRefGoogle Scholar
  23. 23.
    León M, Díaz E, Bennici S, Vega A, Ordónez S, Auroux A. Adsorption of CO2 on hydrotalcite-derived mixed oxides: sorption mechanisms and consequences for adsorption irreversibility. Ind Eng Chem Res. 2010;49(8):3663–71.CrossRefGoogle Scholar
  24. 24.
    Klemkaite K, Prosycevas I, Taraskevicius R, Khinsky A, Kareiva A. Synthesis and characterization of layered double hydroxides with different cations (Mg Co, Ni, Al), decomposition and reformation of mixed metal oxides to layered structures. Open Chem. 2011;9(2):275–82.Google Scholar
  25. 25.
    Othman M, Helwani Z, Fernando W. Synthetic hydrotalcites from different routes and their application as catalysts and gas adsorbents: a review. Appl Organomet Chem. 2009;23(9):335–46.CrossRefGoogle Scholar
  26. 26.
    Gupta S, Agarwal DD, Banerjee S. Synthesis and characterization of hydrotalcites: Potential thermal stabilizers for PVC. Indian J Chem. 2008;47A:1004–8.Google Scholar
  27. 27.
    Kovanda F, Jirátová K, Rymeš J, Koloušek D. Characterization of activated Cu/Mg/Al hydrotalcites and their catalytic activity in toluene combustion. Appl Clay Sci. 2001;18(1):71–80.CrossRefGoogle Scholar
  28. 28.
    Jabłońska M, Chmielarz L, Węgrzyn A, Guzik K, Piwowarska Z, Witkowski S, et al. Thermal transformations of Cu–Mg (Zn)–Al(Fe) hydrotalcite-like materials into metal oxide systems and their catalytic activity in selective oxidation of ammonia to dinitrogen. J Therm Anal Calorim. 2013;114(2):731–47.CrossRefGoogle Scholar
  29. 29.
    Ram Reddy M, Xu Z, Lu G, Diniz da Costa J. Layered double hydroxides for CO2 capture: structure evolution and regeneration. Ind Eng Chem Res. 2006;45(22):7504–9.CrossRefGoogle Scholar
  30. 30.
    Hutson ND, Attwood BC. High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption. 2008;14(6):781–9.CrossRefGoogle Scholar
  31. 31.
    Ficicilar B, Dogu T. Breakthrough analysis for CO2 removal by activated hydrotalcite and soda ash. Catal Today. 2006;115(1):274–8.CrossRefGoogle Scholar
  32. 32.
    Yong Z, Mata V, Rodrigues AE. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures. Ind Eng Chem Res. 2001;40(1):204–9.CrossRefGoogle Scholar
  33. 33.
    Zhu X, Shi Y, Cai N. High-pressure carbon dioxide adsorption kinetics of potassium-modified hydrotalcite at elevated temperature. Fuel. 2017;207:579–90.CrossRefGoogle Scholar
  34. 34.
    Wang Q, Wu Z, Tay HH, Chen L, Liu Y, Chang J, et al. High temperature adsorption of CO2 on Mg–Al hydrotalcite: effect of the charge compensating anions and the synthesis pH. Catal Today. 2011;164(1):198–203. Scholar
  35. 35.
    Wang Q, Tay HH, Ng DJW, Chen L, Liu Y, Chang J, et al. The effect of trivalent cations on the performance of Mg–M–CO3 layered double hydroxides for high-temperature CO2 capture. Chemsuschem. 2010;3(8):965–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Costantino U, Marmottini F, Nocchetti M, Vivani R. New synthetic routes to hydrotalcite-like compounds-characterisation and properties of the obtained materials. Eur J Inorg Chem. 1998;1998(10):1439–46.CrossRefGoogle Scholar
  37. 37.
    Basąg S, Kovanda F, Piwowarska Z, Kowalczyk A, Pamin K, Chmielarz L. Hydrotalcite-derived Co-containing mixed metal oxide catalysts for methanol incineration. J Therm Anal Calorim. 2017;129(3):1301–11.CrossRefGoogle Scholar
  38. 38.
    Kloprogge JT, Wharton D, Hickey L, Frost RL. Infrared and Raman study of interlayer anions CO32–, NO3–, SO42– and ClO4– in Mg/Al-hydrotalcite. Am Miner. 2002;87(5–6):623–9.CrossRefGoogle Scholar
  39. 39.
    Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A Cryst Phys Diffr Theor Gen Crystallog. 1976;32(5):751–67.CrossRefGoogle Scholar
  40. 40.
    Costantino U, Curini M, Montanari F, Nocchetti M, Rosati O. Hydrotalcite-like compounds as catalysts in liquid phase organic synthesis: I. Knoevenagel condensation promoted by [Ni0.73Al0.27(OH)2](CO3)0.135. J Mol Catal A Chem. 2003;195(1):245–52.CrossRefGoogle Scholar
  41. 41.
    Segal SR, Anderson KB, Carrado KA, Marshall CL. Low temperature steam reforming of methanol over layered double hydroxide-derived catalysts. Appl Catal A. 2002;231(1):215–26.CrossRefGoogle Scholar
  42. 42.
    Lwin Y, Yarmo MA, Yaakob Z, Mohamad AB, Daud WRW. Synthesis and characterization of Cu–Al layered double hydroxides. Mater Res Bull. 2001;36(1):193–8.CrossRefGoogle Scholar
  43. 43.
    Neves V, Costa M, Senra J, Aguiar L, Malta L. Thermal behavior of LDH 2CuAl. CO3 and 2CuAl. CO3/Pd. J Therm Anal Calorim. 2017;130(2):689–94.CrossRefGoogle Scholar
  44. 44.
    Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today. 1991;11(2):173–301.CrossRefGoogle Scholar
  45. 45.
    Resini C, Montanari T, Barattini L, Ramis G, Busca G, Presto S, et al. Hydrogen production by ethanol steam reforming over Ni catalysts derived from hydrotalcite-like precursors: catalyst characterization, catalytic activity and reaction path. Appl Catal A. 2009;355(1):83–93.CrossRefGoogle Scholar
  46. 46.
    Goh K-H, Lim T-T, Dong Z. Application of layered double hydroxides for removal of oxyanions: a review. Water Res. 2008;42(6):1343–68.CrossRefPubMedGoogle Scholar
  47. 47.
    Basąg S, Piwowarska Z, Kowalczyk A, Węgrzyn A, Baran R, Gil B, et al. Cu-Mg-Al hydrotalcite-like materials as precursors of effective catalysts for selective oxidation of ammonia to dinitrogen—the influence of Mg/Al ratio and calcination temperature. Appl Clay Sci. 2016;129:122–30.CrossRefGoogle Scholar
  48. 48.
    Alejandre A, Medina F, Rodriguez X, Salagre P, Cesteros Y, Sueiras J. Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Appl Catal B. 2001;30(1):195–207.CrossRefGoogle Scholar
  49. 49.
    Alejandre A, Medina F, Salagre P, Correig X, Sueiras J. Preparation and study of Cu–Al mixed oxides via hydrotalcite-like precursors. Chem Mater. 1999;11(4):939–48.CrossRefGoogle Scholar
  50. 50.
    Seftel E, Popovici E, Mertens M, De Witte K, Van Tendeloo G, Cool P, et al. Zn–Al layered double hydroxides: synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater. 2008;113(1):296–304.CrossRefGoogle Scholar
  51. 51.
    Porta P, De Rossi S, Ferraris G, Jacono ML, Minelli G, Moretti G. Structural characterization of malachite-like coprecipitated precursors of binary CuO–ZnO catalysts. J Catal. 1988;109(2):367–77.CrossRefGoogle Scholar
  52. 52.
    Behrens M, Girgsdies F, Trunschke A, Schlögl R. Minerals as model compounds for Cu/ZnO catalyst precursors: structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture. Eur J Inorg Chem. 2009;2009(10):1347–57.CrossRefGoogle Scholar
  53. 53.
    Smoláková L, Frolich K, Troppová I, Kutálek P, Kroft E, Čapek L. Determination of basic sites in Mg–Al mixed oxides by combination of TPD-CO2 and CO2 adsorption calorimetry. J Therm Anal Calorim. 2017;127(3):1921–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Politecnico di Torino, Sede di AlessandriaAlessandriaItaly
  2. 2.Prolabin & Tefarm S.r.l.PerugiaItaly

Personalised recommendations