Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 2, pp 1015–1021 | Cite as

Low-temperature heat capacity and standard thermodynamic functions of 1-butyl-3-methylimidazolium lactate

  • Da-Wei Fang
  • Jian-tao Zuo
  • Mei-Chen Xia
  • Jun Li
  • Jia-zhen Yang
Article
  • 72 Downloads

Abstract

The heat capacities of 1-butyl-3-methylimidazolium lactate ionic liquids ([C4mim][Lact]) were measured with a highly accurate automatic adiabatic calorimeter over the temperature range from 79 to 406 K. And the experimental values of molar heat capacities were fitted to a polynomial equation using least square method in the appropriate temperature ranges. The standard molar heat capacity was determined to be 1734.46 ± 5.12 J K−1 mol−1 at 298.15 K. The molar enthalpy and molar entropy of the transition were determined to be 15.575 ± 0.045 and 64.44 ± 0.14 J K−1 mol−1. Other thermodynamic properties, such as (HT − H298.15) and (ST − S298.15), were also calculated. Furthermore, when the temperature reaches 241.87 K, the strongest peaks appeared by analysis of the heat capacity curve. This phenomenon could be explained from the interionic interaction, which is the hydrogen bond between the anions and cations.

Keywords

Lactate Thermodynamic properties Heat capacity Adiabatic calorimeter Ionic liquids 

Notes

Acknowledgements

This project was financially supported by National Nature Science Foundation of China NSFC (Nos. 21673107, 21471073, 21373005) and National Key Technology R&D Program 2015BAB03B03.

Supplementary material

10973_2018_7131_MOESM1_ESM.doc (90 kb)
Supplementary material 1 (DOC 90 kb)

References

  1. 1.
    Wasserscheid P, Boemanna A, Bolm C. Synthesis and performance of ionic liquids determined from the “chiral pool”. Chem Commun. 2002;3:200–1.CrossRefGoogle Scholar
  2. 2.
    Baudequin C, Bregeon D, Levillain J. Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron Asymmetry. 2005;16:3921–45.CrossRefGoogle Scholar
  3. 3.
    Clavier H, Boulanger L, Audi N, Toupet L, Mauduit M, Guillemin JC. Design and synthesis of imidazolinium salts derived from (L)-valine. investigation of their potential in chiral molecular recognition. Chem Commun. 2004;10:1224–5.CrossRefGoogle Scholar
  4. 4.
    Ding J, Welton T, Armstrong DW. Chiral ionic liquids as stationary phases in gas chromatography. Anal Chem. 2004;76:6819–22.CrossRefPubMedGoogle Scholar
  5. 5.
    Bao W, Wang Z, Li Y. Synthesis of chiral ionic liquids from natural amino acids. J Org Chem. 2003;68:591–3.CrossRefPubMedGoogle Scholar
  6. 6.
    Fukumoto K, Yoshizawa M, Ohno H. Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc. 2005;127:2398–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Tao GH, He L, Sun N, Kou Y. New generation ionic liquids: cations derived from amino acids. Chem Commun. 2005;28:3562–4.CrossRefGoogle Scholar
  8. 8.
    Allen CR, Richard PL, Ward AJ, van de Water LGA, Masters AF, Maschmeyer T. Facile synthesis of ionic liquids possessing chiral carboxylates. Tetrahedron Lett. 2006;47:7367–70.CrossRefGoogle Scholar
  9. 9.
    Jiang YY, Wang GN, Zhou Z, Wu YT, Geng J, Zhang ZB. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. Chem Commun. 2008;4:505–7.CrossRefGoogle Scholar
  10. 10.
    Earle MJ, McCormac PB, Seddon KR. Diels-Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate–diethyl ether mixtures. Green Chem. 1999;1:23–5.CrossRefGoogle Scholar
  11. 11.
    Fang DW, Tong J, Guan W, Wang H, Yang JZ. Prediction of the thermodynamic properties of 1-alkyl-3-methylimidazolium lactate ionic liquids [Cnmim][Lact] (n = 2, 3, 4, 5, and 6) by parachor. Sci China Chem. 2010;53:2564–70.CrossRefGoogle Scholar
  12. 12.
    Jiang HC, Zhao Y, Wang JY, Zhao FY, Liu RJ, Hu YQ. Density and surface tension of pure ionic liquid 1-butyl-3-methyl-imidazolium l-lactate and its binary mixture with alcohol and water. J Chem Thermodyn. 2013;64:1–13.CrossRefGoogle Scholar
  13. 13.
    Zheng L, Bu XX, Fan BH, Wei J, Xing NN, Guan W. Study on thermodynamic property for ionic liquid [C4mim][Lact](1-butyl-3-methylimidazolium lactic acid). J Therm Anal Calorim. 2016;123:1619–25.CrossRefGoogle Scholar
  14. 14.
    Dupont J, Suarez PAZ, Souza RF, Burrow RA, Kintzinger JP. C_H-π Interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt: solid and solution structures. Chem Eur J. 2000;6:2377–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Hagiwara R, Ito YJ. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. Fluor Chem. 2000;105:221–7.CrossRefGoogle Scholar
  16. 16.
    der Schrö U, Wadhawan JD, Compton RG, Marken F, Suarez PAZ, Consorti CS, de Souza RF, Dupont J. Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New J Chem. 2000;24:1009–15.CrossRefGoogle Scholar
  17. 17.
    Tan ZC, Sun LX, Meng SH, Li L, Zhang JB. Heat capacities and thermodynamic functions of p-chlorobenzoic acid. Chem J Chin Univ. 2002;34:1417 (in China).Google Scholar
  18. 18.
    Tan ZC, Sun GY, Song YJ, Wang L, Han JR, Wang M. An adiabatic calorimeter for heat capacity measurement of small samples-the heat capacity of nonlinear optical materials KTiOPO4 and RbTiOAsO4 crystals. Thermochim Acta. 2000;247:252–3.Google Scholar
  19. 19.
    Tan ZC, Di YY. Review of modern low-temperature adiabatic calorimetry. Prog Chem. 2006;18:1234 (in China).Google Scholar
  20. 20.
    Ditmars DA, Ishihara S, Chang SS, Bernstein G, Wes ED. Enthalpy and heat-capacity standard reference material: synthetic sapphire (α-Al2O3) from 10 to 2250 K. J Res Natl Bur Stand. 1982;87:159–63.CrossRefGoogle Scholar
  21. 21.
    He HY, Zheng YZ, Chen H, Zhang XC, Yao XQ, Zhang SJ. Computational studies of the structure and cation-anion interactions in 1-ethyl-3-methylimidazolium lactate ionic liquid. Sci China Chem. 2012;55:1548–56.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Da-Wei Fang
    • 1
  • Jian-tao Zuo
    • 1
  • Mei-Chen Xia
    • 1
  • Jun Li
    • 1
  • Jia-zhen Yang
    • 1
  1. 1.Institute of Rare and Scattered Elements, College of ChemistryLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations