Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 2, pp 1099–1107 | Cite as

Chemical kinetics and thermodynamics of the AlN crystalline phase formation on sapphire substrate in ammonia MBE

  • D. S. Milakhin
  • T. V. Malin
  • V. G. Mansurov
  • Y. G. Galitsyn
  • K. S. Zhuravlev


Chemical kinetics of a two-dimensional (2D) AlN layer formation on the (0001) sapphire (Al2O3) surface during nitridation as function of ammonia flux and temperature is investigated by reflection high-energy electron diffraction. The process on the surface is described in framework of a chemical reactions kinetic model including interaction between partially reduced aluminum oxide species (AlO) and chemisorbed NH2 particles for the temperature range < 1210 K. The experimentally determined AlN formation rates as functions of both the temperature and the ammonia pressure are successfully described by a simple set of kinetic equations. Calculated maximum rate of the process well agrees with the experimental values. It was found that AlN formation rate is independent from temperature for the temperature range > 1210 K. In this range, the process is described as a phase transition in frame of lattice gas model. Precision measurement of 2D AlN lattice parameters during the nitridation process detects the value of 0.301 nm. This value strongly differs from bulk value of wurtzite AlN structure 0.311 nm, but it coincides exactly with a characteristic structure parameter of the oxygen-deficient (0001) Al2O3 surface with reconstruction (√31×√31)R ± 9°. We assume that this coincidence is the result of minimizing the elastic stresses at the heterojunction of the 2D AlN and the (0001) Al2O3 layer.


Reflection high-energy electron diffraction (RHEED) Surface processes Molecular beam epitaxy III-nitrides Nitridation 



This work was supported by the Russian Foundation for Basic Research (Grant Nos. 17-02-00947, 16-02-00018, 16-02-00175).


  1. 1.
    Strite S, Morkoc H. GaN, AlN and InN: a review. J Vac Sci Technol B. 1992;10:1237.CrossRefGoogle Scholar
  2. 2.
    Uchida K, Watanabe A, Yano F, Kouguchi M, Tanaka T, Minagawa S. Nitridation process of sapphire substrate surface and its effect on the growth of GaN. J Appl Phys. 1996;79:3487.CrossRefGoogle Scholar
  3. 3.
    Nakamura S, Mukai T, Senoh M. Highly P-typed Mg-doped GaN films grown with GaN buffer layers. Jpn J Appl Phys. 1991;30:1708.CrossRefGoogle Scholar
  4. 4.
    Cho Y, Kim Y, Weber ER, Ruvimov S, Liliental-Weber Z. Chemical and structural transformation of sapphire (Al2O3) surface by plasma source nitridation. J Appl Phys. 1999;85(11):7909.CrossRefGoogle Scholar
  5. 5.
    Saito Y, Akiyama T, Nakamura K, Ito T. Ab initio-based approach to elemental nitridation process of α-Al2O3. J Cryst Growth. 2013;362:29–32.CrossRefGoogle Scholar
  6. 6.
    Alekseev AN, Krasovitsky DM, Petrov SI, Chaly VP. Molecular-beam epitaxial growth of GaN layer with low dislocation density. Semiconductors. 2012;46:11.CrossRefGoogle Scholar
  7. 7.
    Ing-Song Yu, Chang C-P, Yang C-P, Lin C-T, Ma Y-R, Chen C-C. Characterization and density control of GaN nanodots on Si (111) by droplet epitaxy using plasma-assisted molecular beam epitaxy. Nanoscale Res Lett. 2014;9(1):682.CrossRefGoogle Scholar
  8. 8.
    Chen S-H, Chou P-C, Cheng S. Channel temperature measurement in hermetic packaged GaN HEMTs power switch using fast static and transient thermal methods. J Therm Anal Calorim. 2017;129:1159–68.CrossRefGoogle Scholar
  9. 9.
    Grandjean N, Massies J, Leroux M. Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers. Appl Phys Lett. 1996;69(14):2017.CrossRefGoogle Scholar
  10. 10.
    Wang Y, Özcan AS, Özaydin G, Ludwig KF, Bhattacharyya A, Moustakas TD, Zhou H, Headrick RL, Siddons DP. Real-time synchrotron X-ray studies of low- and high-temperature nitridation of c-plain sapphire. Phys Rev B. 2006;74:235304.CrossRefGoogle Scholar
  11. 11.
    Im I, Chang J, Oh D, Park J, Yao T. Dynamic investigations of (0001) Al2O3 surfaces treated with a nitrogen plasma. J Ceram Process Res. 2012;13(6):783.Google Scholar
  12. 12.
    Costales A, Blanco MA, Francisco E, Solano CJF, Pendas AM. Theoretical simulation of AlN nanocrystals. J Phys Chem C. 2008;112:6667.CrossRefGoogle Scholar
  13. 13.
    Solano CJF, Costales A, Francisco E, Pendas AM, Blanco MA, Lau K, He H, Pandey R. Buckling in wurtzite-like AlN nanostructures and crystals: why nano can be different. Comput Model Eng Sci. 2008;24(2):143.CrossRefGoogle Scholar
  14. 14.
    Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S. Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B. 2009;80:155453.CrossRefGoogle Scholar
  15. 15.
    Ivanovskii AL. Graphene-based and graphene-like materials. Russ Chem Rev. 2012;81(7):571.CrossRefGoogle Scholar
  16. 16.
    Houssa M, Pourtois G, Afanas’ev VV, Stesmans A. Can silicon behave like graphene? A first-principles study. Appl Phys Lett. 2010;97:112106.CrossRefGoogle Scholar
  17. 17.
    Dwikusuma F, Kuech TF. X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: nitridation mechanism. J Appl Phys. 2003;94:5656.CrossRefGoogle Scholar
  18. 18.
    Das A, Goswami M, Krishnan M. Crystallization kinetics of Li2O–Al2O3–GeO2–P2O5 glass–ceramics system. J Therm Anal Calorim. 2017;131:2421–31.CrossRefGoogle Scholar
  19. 19.
    Zhdanov VP. Elementary physicochemical processes on solid surfaces. New York: Plenum; 1991.CrossRefGoogle Scholar
  20. 20.
    Malin TV, Mansurov VG, Gilinskii AM, Protasov DY, Kozhukhov AS, Vasilenko AP, Zhuravlev KS. Growth of AlGaN/GaN heterostructures with a two-dimensional electron gas on AlN/Al2O3 substrates. Optoelectron Instrum Data Process. 2013;49(5):429 (in Russia: Avtometriya. 2013;49(5):17).CrossRefGoogle Scholar
  21. 21.
    Zangwill A. Physics at surfaces. Cambridge University Press, Cambridge. 1988;5:111.Google Scholar
  22. 22.
    Wang GC, Lu TM. Physical realization of two-dimensional Ising critical phenomena: oxygen chemisorbed on the W(112) surface. Phys Rev B. 1985;31:5919.Google Scholar
  23. 23.
    Lauritsen JV, Jensen MCR, Venkataramani K, Hinnemann B, Helveg S, Clausen BS, Besenbacher F. Atomic-scale structure and stability of the √31 × √31R±9° surface of Al2O3 (0001). Phys Rev Lett. 2009;103:076103.CrossRefPubMedGoogle Scholar
  24. 24.
    Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini SA, Grazianetti C, Chiappe D, Molle A, Fanciulli M, Dimoulas A. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111). Appl Phys Lett. 2013;103:251605.CrossRefGoogle Scholar
  25. 25.
    French TM, Somorjai GA. Composition and surface structure of the (0001) face of alpha-alumina by low-energy electron diffraction. J Phys Chem. 1970;74:2489.CrossRefGoogle Scholar
  26. 26.
    Vilfan I, Lancon F, Villain J. Rotational reconstruction of sapphire (0001). Surf Sci. 1997;392:62.CrossRefGoogle Scholar
  27. 27.
    Fattal E, Radeke M, Reynolds G, Carter EA. Ab initio structure and energetics for the molecular and dissociative adsorption of NH3 on Si(100)-2 × 1. J Phys Chem B. 1997;101:8658.CrossRefGoogle Scholar
  28. 28.
    Pignedoli CA, Di Felice R, Bertoni CM. Dissociative chemisorption of NH3 molecules on GaN(0001) surfaces. Phys Rev B. 2001;64:11330.CrossRefGoogle Scholar
  29. 29.
    Galitsyn YuG, Lyamkina AA, Moshchenko SP, Shamirzaev TS, Zhuravlev KS, Toropov AI. Self-assembled quantum dots: from Stranski-Krastanov to droplet epitaxy. In: Belucci S, editor. Self-assembly of nanostructures. New York: Springer; 2012. p. 127–200.CrossRefGoogle Scholar
  30. 30.
    Yamaguchi H, Horikoshi Y. Surface structure transitions on InAs and GaAs (001) surfaces. Phys Rev B. 1995;51:9836.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Rzhanov Institute of Semiconductor PhysicsSiberian Branch of the Russian Academy of ScienceNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations