Journal of Thermal Analysis and Calorimetry

, Volume 135, Issue 1, pp 533–549 | Cite as

Effects of radiation on mixed convection stagnation-point flow of MHD third-grade nanofluid over a vertical stretching sheet

  • Bijan Golafshan
  • Asghar B. RahimiEmail author


This paper considers the problem of the two-dimensional mixed convection stagnation-point flow of a magnetohydrodynamic non-Newtonian nanofluid bounded by a vertical stretching sheet. Convective surface boundary and zero surface nanoparticle mass flux conditions are employed. The effects of buoyancy, radiation, Brownian motion, thermophoresis, and viscous dissipation are taken into account. The stretching velocity is assumed to vary linearly with the distance from the stagnation point. The fluid is electrically conducted with uniform magnetic field, and the work done due to deformation is taken into consideration. The three-coupled partial differential boundary layer equations are reduced to ordinary differential equations by using proper similarity transformations. Analytical solution by homotopy analysis method is obtained. Effects of different physical parameters on the dynamics of the problem are analyzed and discussed.


Non-Newtonian fluid Third-grade fluid Homotopy analysis method Stretching sheet Boundary layer equations 

List of symbols

\( {\mathbf{A}}_{\text{i}} \)

Kinematic tensors (–)

\( a,c \)

Positive constants (s−1)

\( {\mathbf{B}} \)

Magnetic field vector (T)

\( Bi \)

Biot number (–)

\( B_{0} \)

Magnetic field component (T)

\( b \)

Body forces (N m−3)

\( C \)

Nanoparticles concentration (kg m−3)

\( C_{\infty } \)

Ambient fluid concentration (kg m−3)

\( C_{\text{f}} \)

Skin friction coefficient (–)

\( D_{\text{B}} \)

Brownian diffusion coefficient (m2 s−1)

\( D_{\text{T}} \)

Thermophoresis diffusion coefficient (m2 s−1)

\( Ec \)

Eckert number (–)

\( f \)

Dimensionless velocity function (–)

\( g \)

Gravity acceleration (m s−2)

\( G_{\text{T}} \)

Local Grashof number (–)

\( h_{\text{f}} \)

Convection coefficient (W m−2K−1)

\( {\mathbf{j}} \)

Electric current (A)

\( K \)

Viscoelastic parameter (–)

\( k^{*} \)

Mean absorption coefficient (–)

\( L \)

Cross-viscous parameter (–)

\( M \)

Magnetic field parameter (–)

\( Nb \)

Brownian motion parameter (–)

\( Nt \)

Thermophoresis parameter (–)

\( Nu_{\text{x}} \)

Local Nusselt number (–)

\( Pr \)

Prandtl number (–)

\( Re_{\text{x}} \)

Local Reynolds number (–)

\( R_{\text{d}} \)

Radiation parameter (–)

\( {\mathbf{T}} \)

Cauchy stress tensor (–)

\( T_{\text{f}} \)

Hot fluid temperature (K)

\( T_{\infty } \)

Ambient temperature (K)

\( U_{\infty } \)

External flow velocity (m s−1)

\( (u,v) \)

Velocity components (m s−1)

\( u_{\text{w}} \)

Stretching sheet velocity (m s−1)

\( (x,y) \)

Cartesian coordinate components (m)

Greek symbols

\( \alpha \)

Thermal diffusivity (m2 s−1)

\( \alpha_{\text{i}} ,\beta_{\text{i}} \)

Material constants (–)

\( \beta \)

Third-grade fluid parameter (–)

\( \beta_{\text{c}} \)

Coefficient of mass expansion (K−1)

\( \beta_{\text{T}} \)

Coefficient of thermal expansion (K−1)

\( \phi \)

Dimensionless concentration function (–)

\( \eta \)

Similarity variable (–)

\( \mu \)

Viscosity (N s m−2)

\( \nu \)

Kinematic viscosity (m2 s−1)

\( \theta \)

Dimensionless temperature function (–)

\( \rho \)

Density (kg m−3)

\( \rho_{\text{f}} \)

Density of the base fluid (kg m−3)

\( \rho_{\text{p}} \)

Density of the nanoparticles (kg m−3)

\( \sigma \)

Electrical conductivity of fluid (S m−1)

\( \sigma^{*} \)

Stefan–Boltzmann constant (W m−2 K−4)



Financial support of Ferdowsi University of Mashhad under Contract No. 2/42929 is acknowledged.


  1. 1.
    Sakiadis B. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 1961;7(1):26–8.Google Scholar
  2. 2.
    Sakiadis B. Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AIChE J. 1961;7(2):221–5.Google Scholar
  3. 3.
    Erickson L, Fan L, Fox V. Heat and mass transfer on moving continuous flat plate with suction or injection. Ind Eng Chem Fundam. 1966;5(1):19–25.Google Scholar
  4. 4.
    Ali M, Al-Yousef F. Laminar mixed convection from a continuously moving vertical surface with suction or injection. Heat Mass Transf. 1998;33(4):301–6.Google Scholar
  5. 5.
    Chen C-H. Laminar mixed convection adjacent to vertical, continuously stretching sheets. Heat Mass Transf. 1998;33(5–6):471–6.Google Scholar
  6. 6.
    Ali ME. The effect of variable viscosity on mixed convection heat transfer along a vertical moving surface. Int J Therm Sci. 2006;45(1):60–9.Google Scholar
  7. 7.
    Ishak A, Nazar R, Pop I. Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet. Meccanica. 2006;41(5):509–18.Google Scholar
  8. 8.
    Ishak A, Jafar K, Nazar R, Pop I. MHD stagnation point flow towards a stretching sheet. Physica A. 2009;388(17):3377–83.Google Scholar
  9. 9.
    Hayat T, Abbas Z, Pop I, Asghar S. Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int J Heat Mass Transf. 2010;53(1):466–74.Google Scholar
  10. 10.
    Masuda H, Ebata A, Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei. 1993;7(4):227–33.Google Scholar
  11. 11.
    Chol S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.Google Scholar
  12. 12.
    Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.Google Scholar
  13. 13.
    Khan W, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf. 2010;53(11):2477–83.Google Scholar
  14. 14.
    Haq RU, Nadeem S, Khan ZH, Akbar NS. Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet. Physica E. 2015;65:17–23.Google Scholar
  15. 15.
    Makinde O, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci. 2011;50(7):1326–32.Google Scholar
  16. 16.
    Aziz A. A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul. 2009;14(4):1064–8.Google Scholar
  17. 17.
    Mustafa M, Hayat T, Pop I, Asghar S, Obaidat S. Stagnation-point flow of a nanofluid towards a stretching sheet. Int J Heat Mass Transf. 2011;54(25):5588–94.Google Scholar
  18. 18.
    Mabood F, Khan W. Analytical study for unsteady nanofluid MHD Flow impinging on heated stretching sheet. J Mol Liq. 2016;219:216–23.Google Scholar
  19. 19.
    Makinde O, Khan W, Khan Z. Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet. Int J Heat Mass Transf. 2013;62:526–33.Google Scholar
  20. 20.
    Malvandi A, Hedayati F, Ganji D. Slip effects on unsteady stagnation point flow of a nanofluid over a stretching sheet. Powder Technol. 2014;253:377–84.Google Scholar
  21. 21.
    Mansur S, Ishak A, Pop I. The magnetohydrodynamic stagnation point flow of a nanofluid over a stretching/shrinking sheet with suction. PLoS ONE. 2015;10(3):e0117733.Google Scholar
  22. 22.
    Rashid I, Haq RU, Al-Mdallal QM. Aligned magnetic field effects on water based metallic nanoparticles over a stretching sheet with PST and thermal radiation effects. Physica E. 2017;89:33–42.Google Scholar
  23. 23.
    Rahman M, Eltayeb I. Radiative heat transfer in a hydromagnetic nanofluid past a non-linear stretching surface with convective boundary condition. Meccanica. 2013;48(3):601–15.Google Scholar
  24. 24.
    Rana P, Dhanai R, Kumar L. Radiative nanofluid flow and heat transfer over a non-linear permeable sheet with slip conditions and variable magnetic field: dual solutions. Ain Shams Eng J. 2017;8(3):341–52. Scholar
  25. 25.
    Zaimi K, Ishak A, Pop I. Boundary layer flow and heat transfer over a nonlinearly permeable stretching/shrinking sheet in a nanofluid. Sci Rep. 2014;4:4404.Google Scholar
  26. 26.
    Malvandi A, Moshizi S, Ganji D. Nanoparticle transport effect on magnetohydrodynamic mixed convection of electrically conductive nanofluids in micro-annuli with temperature-dependent thermophysical properties. Physica E. 2017;88:35–49.Google Scholar
  27. 27.
    Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2017;8:1–13.Google Scholar
  28. 28.
    Javadi P, Rashidi S, Abolfazli Esfahani J. flow and heat management around obstacle by nanofluid and incidence angle. J Thermophys Heat Transf. 2017;31(4):983–8.Google Scholar
  29. 29.
    Bovand M, Rashidi S, Esfahani J. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31(1):218–29.Google Scholar
  30. 30.
    Shirejini SZ, Rashidi S, Esfahani J. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.Google Scholar
  31. 31.
    Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;2:1–12.Google Scholar
  32. 32.
    Dunn J, Rajagopal K. Fluids of differential type: critical review and thermodynamic analysis. Int J Eng Sci. 1995;33(5):689–729.Google Scholar
  33. 33.
    Fosdick R, Rajagopal K, editors. Thermodynamics and stability of fluids of third grade. In: Proceedings of the royal society of London A: mathematical, physical and engineering sciences; 1980. The Royal Society.Google Scholar
  34. 34.
    Rajagopal K, Szeri A, Troy W. An existence theorem for the flow of a non-Newtonian fluid past an infinite porous plate. Int J Non Linear Mech. 1986;21(4):279–89.Google Scholar
  35. 35.
    Maneschy C, Massoudi M, Ghoneimy A. Heat transfer analysis of a non-Newtonian fluid past a porous plate. Int J Non Linear Mech. 1993;28(2):131–43.Google Scholar
  36. 36.
    Sahoo B. Flow and heat transfer of an electrically conducting third grade fluid past an infinite plate with partial slip. Meccanica. 2010;45(3):319–30.Google Scholar
  37. 37.
    Sahoo B, Poncet S. Flow and heat transfer of a third grade fluid past an exponentially stretching sheet with partial slip boundary condition. Int J Heat Mass Transf. 2011;54(23):5010–9.Google Scholar
  38. 38.
    Shehzad S, Hussain T, Hayat T, Ramzan M, Alsaedi A. Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation. J Cent South Univ. 2015;22(1):360–7.Google Scholar
  39. 39.
    Hayat T, Aziz A, Muhammad T, Ahmad B. On magnetohydrodynamic flow of second grade nanofluid over a nonlinear stretching sheet. J Magn Magn Mater. 2016;408:99–106.Google Scholar
  40. 40.
    Hayat T, Aziz A, Muhammad T, Alsaedi A, Mustafa M. On magnetohydrodynamic flow of second grade nanofluid over a convectively heated nonlinear stretching surface. Adv Powder Technol. 2016;27(5):1992–2004.Google Scholar
  41. 41.
    Ghasemi SE, Hatami M, Sarokolaie AK, Ganji D. Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods. Physica E. 2015;70:146–56.Google Scholar
  42. 42.
    Liao S. Beyond perturbation: introduction to the homotopy analysis method. Boca Raton: CRC Press; 2003.Google Scholar
  43. 43.
    Liao S. On the homotopy analysis method for nonlinear problems. Appl Math Comput. 2004;147(2):499–513.Google Scholar
  44. 44.
    Liao S-J. An approximate solution technique not depending on small parameters: a special example. Int J Non Linear Mech. 1995;30(3):371–80.Google Scholar
  45. 45.
    Liao S, Tan Y. A general approach to obtain series solutions of nonlinear differential equations. Stud Appl Math. 2007;119(4):297–354.Google Scholar
  46. 46.
    Kuznetsov A, Nield D. Natural convective boundary-layer flow of a nanofluid past a vertical plate: a revised model. Int J Therm Sci. 2014;77:126–9.Google Scholar
  47. 47.
    Rivlin RS, Ericksen J. Stress-deformation relations for isotropic materials. Collected Papers of RS Rivlin. Berlin: Springer; 1997. p. 911–1013.Google Scholar
  48. 48.
    Pakdemirli M. The boundary layer equations of third-grade fluids. Int J Non Linear Mech. 1992;27(5):785–93.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringFerdowsi University of MashhadMashhadIran

Personalised recommendations