Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 967–977 | Cite as

Thermal behaviour of sericite clays as precursors of mullite materials

  • Flor de Mayo González-Miranda
  • Eduardo Garzón
  • Juan Reca
  • Luis Pérez-Villarejo
  • Sergio Martínez-Martínez
  • Pedro José Sánchez-Soto


Thermal analysis of some sericite clays, from several deposits in Spain, which are not exploited at this time, has been studied. The samples have been previously characterized by mineralogical and chemical analysis. Sericite clays have interesting properties, with implications in ceramics and advanced materials, in particular concerning the formation of mullite by heating. According to this investigation by differential thermal and thermogravimetric analysis (DTA-TG), the sericite clay samples can be classified as: Group (I), sericite–kaolinite clays, with high or medium sericite content, characterized by an endothermic DTA peak of dehydroxylation of kaolinite with mass loss, which overlapped with dehydroxylation of sericite, and Group (II), sericite–kaolinite–pyrophyllite clays, with broader endothermic DTA peaks, in which kaolinite is dehydroxylated first and later sericite and pyrophyllite with the main mass loss, appearing the peaks overlapped. X-ray diffraction analysis of the heated sericite clay samples evidenced the decomposition of dehydroxylated sericite and its disappearance at 1050 °C, with formation of mullite, the progressive disappearance of quartz and the formation of amorphous glassy phase. The vitrification temperature is ~ 1250 °C in all these samples, with slight variations in the temperatures of maximum apparent density (2.41–2.52 g mL−1) in the range 1200–1300 °C. The fine-grained sericite content and the presence of some mineralogical components contribute to the formation of mullite and the increase in the glassy phase by heating. Mullite is the only crystalline phase detected at 1400 °C with good crystallinity. SEM revealed the dense network of rod-shaped and elongated needle-like mullite crystals in the thermally treated samples. These characteristics are advantageous when sericite clays are applied as ceramic raw materials.


Illite Sericite Sericite clays Thermal behaviour Mullite Ceramics 



The authors want to dedicate this paper to Professor and friend Jesús Ma. Rincón, Research Professor from CSIC (Madrid), with occasion of his retirement after reached his 70th birthday. This research is supported by Junta de Andalucía through Research Groups TEP 204 and AGR107. The critical reading and valuable comments of a first draft of this paper by Dr. N. Bouzidi are acknowledged.


  1. 1.
    Deer WA, Howie RA, Zussman. An introduction to the rock-forming minerals. Hong Kong: Longman; 1992.Google Scholar
  2. 2.
    Winkler HGF. Petrogenesis of metamorphic rocks. New York: Springer; 1976.CrossRefGoogle Scholar
  3. 3.
    Zhang M, Wang L, Hirai S, Redfern SAT, Salje EKH. Dehydroxylation and CO2 incorporation in annealed mica (sericite): an infrared spectroscopy study. Am Miner. 2005;90:173–80.CrossRefGoogle Scholar
  4. 4.
    Higashi S. Sericite and interstratified sericite-montmorillonite associated with Kuroko deposits in the Hokuroku district. Clay Sci. 1974;4:243–53.Google Scholar
  5. 5.
    Schomburg J, Zwahr H. Thermal differential diagnosis of mica mineral group. J Therm Anal. 1997;48:135–9.CrossRefGoogle Scholar
  6. 6.
    Galán Huertos E, Espinosa de los Monteros J. El caolín en España. Características, identificación y ensayos cerámicos. Madrid: Sociedad Española de Cerámica y Vidrio; 1975.Google Scholar
  7. 7.
    García Verduch A, Alvarez Estrada D. The formation of mullite from sericite and its mixtures with alumina and kaolin. In: Stewart GH, editor. Science of ceramics. London and New York: Academic Press; 1962. Vol. 1, pp. 285–294. This paper was also published in Spanish as follows: La formación de mullita a partir de sericita y sus mezclas con alúmina y caolín. Bol Soc Esp Ceram Vidr 1963;2:81–93.Google Scholar
  8. 8.
    Espinosa de los Monteros J, Del Río MA, Martínez Cáceres R, Alvarez-Estrada D, Aleixandre V. Sericite clay as a raw material for the fabrication of whitewares bodies. Ceramurg Int. 1977;3:109–14.CrossRefGoogle Scholar
  9. 9.
    Espinosa de los Monteros J, Alvarez Estrada D, Martínez R. Porcelanas aluminosas de elevada resistencia mecánica obtenidas a partir de arcillas sericíticas. Bol Soc Esp Ceram Vidr. 1979;18:11–6.Google Scholar
  10. 10.
    Kimura I, Hotta N, Sato K, Saito N, Yasukawa S. Effect of alumina and titania additions on properties of porcelain bodies from murakami sericite. Ceram Int. 1988;14:217–22.CrossRefGoogle Scholar
  11. 11.
    García Ramos G, González García F, Sánchez-Soto PJ, Ruiz Abrio MT. Propiedades refractarias y estudio de los productos obtenidos a partir de un conjunto de materiales silicoaluminosos españoles. I. Bol Soc Esp Ceram Vidr. 1985;24:67–79.Google Scholar
  12. 12.
    Mesa JM, Contribución al estudio mineralógico de las Pizarras Alumínicas (Tierras Blancas) del Paleozoico de la provincia de Badajoz. Ph. D. thesis. University of Sevilla 1986.Google Scholar
  13. 13.
    Parras J, Sánchez-Jiménez C, Rodas M, Luque FJ. Ceramic applications of Middle Ordovician shales from central Spain. Appl Clay Sci. 1996;11:25–41.CrossRefGoogle Scholar
  14. 14.
    Sánchez-Soto PJ, Jiménez MC, Pascual J, Raigón M, Pérez-Rodríguez JL. Influence of mechanical and thermal treatments on raw materials containing pyrophyllite. Bol Soc Esp Ceram Vidr. 2000;39:119–34.CrossRefGoogle Scholar
  15. 15.
    Ferrari S, Gualteri AF. The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci. 2006;32:73–81.CrossRefGoogle Scholar
  16. 16.
    Reddy DHK, Lee S-M, Kim J-O. A review on emerging applications of natural sericite and its composites. World Appl Sci J. 2013;27:1514–23.Google Scholar
  17. 17.
    Dondi M, Raimondo M, Zanelli C. Clays and bodies for ceramic tiles: reappraisal and technological classification. Appl Clay Sci. 2014;96:91–109.CrossRefGoogle Scholar
  18. 18.
    Choi H-J. Effect of Mg-sericite flocculant for treatment of brewery wastewater. Appl Clay Sci. 2015;115:145–9.CrossRefGoogle Scholar
  19. 19.
    Wang X, Li J-H, Guan W-M, Fu M-J, Liu L-J. Emulsion-templated high porosity mullite ceramics with sericite induced textured structures. Mater Des. 2016;89:1041–7.CrossRefGoogle Scholar
  20. 20.
    González I, Campos P, Barba-Brioso C, Romero A, Galán E, Mayoral E. A proposal for the formulation of high-quality ceramic “green” material with traditional raw materials mixed with Al-clays. Appl Clay Sci. 2016;131:113–23.CrossRefGoogle Scholar
  21. 21.
    Hsiao Y-H, Ho T-Y, Shen Y-H, Ray D. Synthesis of analcime from sericite and pyrophyllite by microwave-assisted hydrothermal processes. Appl Clay Sci. 2017;143:378–86.CrossRefGoogle Scholar
  22. 22.
    Schultz LG. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geol Surv Professional Papers 1964; 391C.Google Scholar
  23. 23.
    Biscaye PE. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic ocean and adjacent sea and oceans. Geol Soc Am Bull. 1965;76:803–31.CrossRefGoogle Scholar
  24. 24.
    Mackenzie RC. Differential thermal analysis. Chapter 9. London: Academic Press; 1970.Google Scholar
  25. 25.
    Romero P, González JC, Bustamante A, Ruiz-Conde A, Sánchez-Soto PJ. Estudio in situ de la transformación térmica de limonita utilizada como pigmento procedente de Perú. Bol Soc Esp Ceram Vidr. 2013;52:127–31.CrossRefGoogle Scholar
  26. 26.
    Pask J, Tomsia AP. Formation of mullite from sol–gel mixtures and kaolinite. J Am Ceram Soc. 1991;74:2367–73.CrossRefGoogle Scholar
  27. 27.
    Castelein O, Soulestin B, Bonnet JP. Blanchart. The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram Int. 2001;27:517–22.CrossRefGoogle Scholar
  28. 28.
    Wang H, Li C, Peng Z, Zhang S. Characterization and thermal behaviour of kaolin. J Therm Anal Calorim. 2011;105:157–60.CrossRefGoogle Scholar
  29. 29.
    Koç S, Toplan N, Yildiz K, Toplan HÖ. Effects of mechanical activation on the non-isothermal kinetics of mullite formation from kaolinite. J Therm Anal Calorim. 2011;103:791–6.CrossRefGoogle Scholar
  30. 30.
    Brindley GW, Brown G. Crystal structures of clay minerals and their X-Ray identification. London: Mineralogical Society; 1980.CrossRefGoogle Scholar
  31. 31.
    Pérez-Rodríguez JL, Sánchez-Soto PJ. The influence of the dry grinding on the thermal behaviour of pyrophyllite. J Therm Anal. 1991;37:1401–13.CrossRefGoogle Scholar
  32. 32.
    Wang G, Wang H, Zhang N. In situ high temperature X-ray diffraction study of illite. Appl Clay Sci. 2017;146:254–63.CrossRefGoogle Scholar
  33. 33.
    Sánchez-Soto PJ, Ruiz-Conde A, Bono R, Raigón M, Garzón E. Thermal evolution of a slate. J Therm Anal Calorim. 2007;90:133–41.CrossRefGoogle Scholar
  34. 34.
    Mahmoudi S, Srasra E, Zargouni F. Composition and ceramic properties of carbonate-bearing illitic clays from north-eastern Tunisia. Arab J Sci Eng. 2014;39:5729–37.CrossRefGoogle Scholar
  35. 35.
    Nandi VS, Raupp-Pereira F, Montedo ORK, Oliveira APN. The use of ceramic sludge and recycled glass to obtain engobes for manufacturing ceramic tiles. J Clean Prod. 2015;86:461–70.CrossRefGoogle Scholar
  36. 36.
    Boussen S, Sghaier D, Chaabani F, Jamoussi B, Bennour A. Characteristics and industrial application of the lower cretaceous clay deposit (Bouhedma formation), Southeast Tunisia: potential use for the manufacturing of ceramic tiles and bricks. Appl Clay Sci. 2016;123:210–21.CrossRefGoogle Scholar
  37. 37.
    Húlan T, Kaljuvee T, Štubňa I, Trník A. Investigation on elastic and inelastic properties of Estonian clay from a locality in Kunda during thermal treatment. J Therm Anal Calorim. 2016;124:1153–9.CrossRefGoogle Scholar
  38. 38.
    James J, Rao S. Characterization of silica in rice husk ash. Am Ceram Soc Bull. 1986;65:1177–80.Google Scholar
  39. 39.
    Gualteri A, Bertolani M. Mullite and cristobalite formation in fired products starting from halloysite clay. Appl Clay Sci. 1992;7:251–62.CrossRefGoogle Scholar
  40. 40.
    Osborn EF, Muan A, editors. Phase diagrams for ceramists. Plate 407. Columbus: The American Ceramic Society; 1960.Google Scholar
  41. 41.
    Lecomte GL, Pateyroon B, Blanchart P. Experimental study and simulation of a vertical section mullite-ternary eutectic (985 °C) in the SiO2–Al2O3–K2O system. Mater Res Bull. 2004;39:1469–78.CrossRefGoogle Scholar
  42. 42.
    Norris AW, Taylor D, Thorpe I. Range curves: an experimental method for the study of vitreous pottery bodies. Trans J Br Ceram Soc. 1979;78:102–8.Google Scholar
  43. 43.
    Sánchez-Soto PJ, Díaz-Hernández JL, Raigón-Pichardo M, Ruiz-Conde A, García-Ramos G. Ceramic properties of a Spanish clay containing illite, chlorite and quartz. Br Ceram Trans. 1994;93:196–201.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Flor de Mayo González-Miranda
    • 1
  • Eduardo Garzón
    • 2
  • Juan Reca
    • 2
  • Luis Pérez-Villarejo
    • 3
  • Sergio Martínez-Martínez
    • 3
  • Pedro José Sánchez-Soto
    • 4
  1. 1.Escuela de Ingeniería Mecánica Industrial, Facultad de IngenieríaUniversidad de San Carlos de GuatemalaGuatemala CityGuatemala
  2. 2.Departamento de IngenieríaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Departamento de Ingeniería Química, Ambiental y de los Materiales, Escuela Politécnica Superior de LinaresUniversidad de JaénLinaresSpain
  4. 4.Instituto de Ciencia de Materiales de SevillaCentro Mixto Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de SevillaSevilleSpain

Personalised recommendations