Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 2, pp 895–905 | Cite as

Nonisothermal decomposition kinetics of pure and Mn-doped Fe3O4 nanoparticles

  • Tasmira J. Malek
  • S. H. Chaki
  • J. P. Tailor
  • M. P. Deshpande
Article
  • 49 Downloads

Abstract

Pure Fe3O4 and Mn-doped Fe3O4 nanoparticles were synthesized by simple wet chemical reduction technique using nontoxic precursors. Manganese doping of two concentrations, 10 and 15%, were employed. All the three synthesized nanoparticles were characterized by stoichiometry, crystal structure, and surface morphology. Thermal studies on as-synthesized nanoparticles of pure ferrite (Fe3O4) and manganese (Mn) doped ferrites were carried out. The thermal analysis of the three as-synthesized nanoparticles was done by thermogravimetric (TG), differential thermogravimetric, and differential thermal analysis techniques. All the thermal analyses were done in nitrogen atmosphere in the temperature range of 308–1233 K. All the thermocurves were recorded for three heating rates of 10, 15, and 20 K min−1. The TG curves showed three steps thermal decomposition for Fe3O4 and two steps thermal decompositions for Mn-doped Fe3O4 nanoparticles. The kinetic parameters of the three as-synthesized nanoparticles were evaluated from the thermocurves employing Kissinger–Akahira–Sunose (KAS) method. The thermocurves and evaluated kinetic parameters are discussed in this paper.

Keywords

Ferrite Thermogravimetric Differential thermogravimetric Differential thermal analysis Kinetic parameters 

Notes

Acknowledgements

All the authors are thankful to the Sophisticated Instrumentation Centre for Applied Research & Testing (SICART), Vallabh Vidyanagar, Gujarat, India, for XRD analysis. The authors are grateful to the Department of Metallurgical Engineering, Faculty of Engineering and Technology, M S University of Baroda, Vadodara, India, for EDAX of our samples. The authors are grateful to the Central Salt and Marine Chemical Research Institute, Bhavnagar, Gujarat, India, for SEM analysis. One of the authors, Tasmira J. Malek, is thankful to University Grants Commission (UGC), New Delhi, for the award of Maulana Azad National Fellowship (MANF) to carry out this research work.

References

  1. 1.
    Kinemuchi Y, Ishizaka K, Suematsu H, Jiang W, Yatsui K. Magnetic properties of nanosize NiFe2O4 particles synthesized by pulsed wire discharge. Thin Solid Films. 2002;407:109–13.CrossRefGoogle Scholar
  2. 2.
    Sugimoto M. The past, present, and future of ferrites. J Am Ceram Soc. 1999;82:269–80.CrossRefGoogle Scholar
  3. 3.
    Pati S, Philip J. Effect of cation trapping on thermal stability of Fe3O4 nanoparticles. J Nanosci Nanotechnol. 2014;14:4114–23.CrossRefGoogle Scholar
  4. 4.
    Machala L, Tucek J, Zboril R. Polymorphous transformations of nanometric iron(III) oxide: a review. Chem Mater. 2011;23:3255–72.CrossRefGoogle Scholar
  5. 5.
    Xiaobin X, Mingyuan G, Cen W, Jiang J. High temperature stable mono disperse superparamagnetic core-shell iron-oxide@SnO2 nanoparticles. Appl Phys Lett. 2009;95:183112–3.CrossRefGoogle Scholar
  6. 6.
    Tsedev N, Shinpei Y, Mikio T. Thermal properties of the γ-Fe2O3/poly(methyl methacrylate) core/shell nanoparticles. Solid State Sci. 2005;7:33–6.CrossRefGoogle Scholar
  7. 7.
    Ayyappan S, Panneerselvam G, Antony M, Rao N, Thirumurugan N, Bharathi A, Philip J. Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles. J Appl Phys. 2011;109:084303–8.CrossRefGoogle Scholar
  8. 8.
    Gnanaprakash G, Ayyappan S, Jayakumar T, Philip J, Raj B. Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature. Nanotechnology. 2006;17:5851–7.CrossRefGoogle Scholar
  9. 9.
    Xisheng Y, Dongsheng L, Zhengkuan J, Lide Z. The thermal stability of nanocrystalline maghemite Fe2O3. J Phys D Appl Phys. 1998;31:2739–44.CrossRefGoogle Scholar
  10. 10.
    Chang-Woo L, Sung-Soo J, Jai-Sung L. Phase transformation of β-Fe2O3 hollow nanoparticles. Mater Lett. 2008;62:561–3.CrossRefGoogle Scholar
  11. 11.
    Jian C, Jinghai Y, Lili Y, Maobin W, Bo F, Donglai H, Lin F, Bingji W, Hao F. The effects of doping and shell thickness on the optical and magnetic properties of Mn/Cu/Fe-doped and Co-doped ZnS nanowires/ZnO quantum dots/SiO2 heterostructures. J Appl Phys. 2012;112:014316–8.CrossRefGoogle Scholar
  12. 12.
    Sidhu S, Gilkes J, Posner M. The behavior of Co, Ni, Zn, Cu, Mn, and Cr in magnetite during alteration to maghemite and hematite Soil Sci. Soc Am J. 1980;44:135–8.CrossRefGoogle Scholar
  13. 13.
    Sidhu P. Transformation of trace element-substituted maghemite to hematite. Clays Clay Miner. 1988;36:31–8.CrossRefGoogle Scholar
  14. 14.
    Sarda C, Rousset A. Thermal stability of barium-doped iron oxides with spine structure. Thermchim Acta. 1993;222:21.CrossRefGoogle Scholar
  15. 15.
    Pati S, Singh L, Ochoa M, Guimaraesa M, Sales A, Coaquira H, Oliveira A, Garg K. Facile approach to suppress γ-Fe2O3 to α-Fe2O3 phase transition beyond 600 °C in Fe3O4 nanoparticles. Mater Res Express. 2015;2:045003–12.CrossRefGoogle Scholar
  16. 16.
    Lai J, Shafi M, Loos K, Ulman A, Lee Y, Vogt T, Estournes C. Doping γ Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure. J Am Chem Soc. 2003;125:11470–1.CrossRefGoogle Scholar
  17. 17.
    Vichery C, Maurin I, Bonville P, Boilot P, Gacoin T. Influence of protected annealing on the magnetic properties of γ-Fe2O3 nanoparticles. J Phys Chem C. 2012;116:16311.CrossRefGoogle Scholar
  18. 18.
    Wang J, Chen Q, Zeng C, Hou B. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv Mater. 2004;16:137–40.CrossRefGoogle Scholar
  19. 19.
    Jianjun L, Hongming Y, Guodong L, Yanju L, Jinsong L. Cation distribution dependence of magnetic properties of sol–gel prepared MnFe2O4 spinel ferrite nanoparticles. J Magn Magn Mater. 2010;322:3396–400.CrossRefGoogle Scholar
  20. 20.
    Amighian J, Mozaffari M, Nasr B. Preparation of nano-sized manganese ferrite (MnFe2O4) via co-precipitation method. Phys Stat Sol. C. 2006;3:3188–92.CrossRefGoogle Scholar
  21. 21.
    Chao L, Bingsuo Z, Adam R, Zhang ZJ. Reverse micelle synthesis and characterization of superparamagnetic MnFe2O4 spinel ferrite nanocrystallites. J Phys Chem B. 2000;104:1141–6.Google Scholar
  22. 22.
    Chaki S, Malek T, Chaudhary M, Tailor J, Deshpande M. Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv Nat Sci Nanosci Nanotechnol. 2015;6:035009.CrossRefGoogle Scholar
  23. 23.
    Malek T, Chaki S, Tailor J, Deshpande M. Thermal decomposition study of Mn-doped Fe3O4 nanoparticles. In: AIP conference proceedings; 2016. vol. 1728, p. 020390-5.Google Scholar
  24. 24.
    Budrugeac P, Segal E. Applicability of the Kissinger equation in thermal analysis. J Therm Anal Calorim. 2007;88:703–7.CrossRefGoogle Scholar
  25. 25.
    Kissinger H. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.CrossRefGoogle Scholar
  26. 26.
    Zhao M, Song Z. Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material. J. Power Source. 2007;164:822–8.CrossRefGoogle Scholar
  27. 27.
    Warner LC, Chouyyok W, Mackie EK, Neiner D, Saraf VL, Droubay CT, Warner GM, Addleman SR. Manganese doping of magnetic iron oxide nanoparticles: tailoring surface reactivity for a regenerable heavy metal sorbent. Langmur. 2012;28:3931–7.CrossRefGoogle Scholar
  28. 28.
    Chaki S, Chaudhary M, Deshpande M. Effect of indium and antimony doping in SnS single crystals. Mater Res Bull. 2015;63:173–80.CrossRefGoogle Scholar
  29. 29.
    Malek T, Chaki S, Chaudhary M, Tailor J, Deshpande M. Study of the effect of Mn doping on Fe3O4 nanoparticles synthesized by wet chemical technique. 2017; (submitted manuscript).Google Scholar
  30. 30.
    Gherca D, Pui A, Cornei N, Cojocariu A, Nica V, Caltun O. Synthesis, characterization and magnetic properties of MFe2O4 (M = Co, Mg, Mn, Ni) nanoparticles using ricin oil as capping agent. J Magn Magn Mater. 2012;324:3906–11.CrossRefGoogle Scholar
  31. 31.
    Lu Z, Yang L, Guo Y. Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis. J Power Source. 2006;156:555–9.CrossRefGoogle Scholar
  32. 32.
    Gillot B, Nouaim H, Mathieu F, Rousset A. Effect of a pretreatment under high-pressure on the oxidation mechanism of magnetite to γ-Fe2O3 and on the transformation γ-Fe2O3 to α- Fe2O3. Mater Chem Phys. 1991;28(4):389–97.CrossRefGoogle Scholar
  33. 33.
    Pati S, Philip J. Afacile approach to enhance the high temperature stability of magnetite nanoparticles with improved magnetic property. J Appl Phys. 2013;113:044314–9.CrossRefGoogle Scholar
  34. 34.
    Friedman H. Kinetics of thermal degradation of char-foaming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. C. 1963;6:183–95.CrossRefGoogle Scholar
  35. 35.
    Flynn J, Wall L. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem A. 1966;70:87–523.Google Scholar
  36. 36.
    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.CrossRefGoogle Scholar
  37. 37.
    Akahira T, Sunose T. Joint convention of four electrical institutes. Research report (Chiba Institute of Technology). Chiba. 1971;16:22–31.Google Scholar
  38. 38.
    Li C, Tang T. Dynamic thermal analysis of solid-state reactions. J Therm Anal. 1997;49:1243–8.CrossRefGoogle Scholar
  39. 39.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of non isothermal reactions in solid. J Chem Inf Comput Sci. 1996;36:42–5.CrossRefGoogle Scholar
  40. 40.
    Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.CrossRefGoogle Scholar
  41. 41.
    Budrugeac P. Differential non-linear isoconversional procedure for evaluating the activation energy of non-isothermal reactions. J Therm Anal Calorim. 2002;68:131–9.CrossRefGoogle Scholar
  42. 42.
    Budrugeac P, Segal E. Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid–gas reactions. Int J Chem Kinet. 2001;33:564–73.CrossRefGoogle Scholar
  43. 43.
    Vlaev L, Nikolova M, Gospodinov G. Non-isothermal kinetics of dehydration of some selenite hexahydrates. J Solid State Chem. 2004;177:2663–9.CrossRefGoogle Scholar
  44. 44.
    Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.CrossRefGoogle Scholar
  45. 45.
    Yakuphanoglua F, Gorgulub A, Cukurovali A. An organic semiconductor and conduction mechanism: N-[5-methyl-1,3,4-tiyodiazole-2-yl] ditiyocarbamate compound. Phys B. 2004;353:223–9.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Tasmira J. Malek
    • 1
  • S. H. Chaki
    • 1
  • J. P. Tailor
    • 2
  • M. P. Deshpande
    • 1
  1. 1.P. G. Department of PhysicsSardar Patel UniversityVallabh VidyanagarIndia
  2. 2.Applied Physics DepartmentS.V.N.I.T.SuratIndia

Personalised recommendations