Thermal analysis during solidification of an Al–Cu eutectic alloy: interrelation of thermal parameters, microstructure and hardness

  • Rafael Kakitani
  • Guilherme Lisboa de Gouveia
  • Amauri Garcia
  • Noé Cheung
  • José E. SpinelliEmail author


Eutectic alloys are considered promising candidates for high-temperature structural applications. In spite of this, quantitative examination of the effect of the length scale of the eutectic microstructure on mechanical properties remains a challenge. In this sense, assessments of morphology, size and distribution of the phases forming the eutectic mixture, solidified under transient regime and different cooling conditions, endure necessary. In the present study, a large spectrum of cooling rates has been obtained during unsteady-state directional solidification of an Al–33 mass% Cu alloy. The main techniques utilized were: optical microscopy; scanning electron microscopy with X-ray energy-dispersive spectroscopy, X-ray fluorescence spectroscopy and Vickers hardness (HV). The resulting microstructures related to various solidification cooling rates are shown to be formed by eutectic colonies. Three microstructural zones constitute the colony, that is, a fine central regular lamellar Al–Al2Cu eutectic, an intermediate narrow wavy lamellar eutectic and a coarse boundary eutectic zone. Iron impurity appears to be able to degenerate the eutectic into a more randomly distributed microstructure. The colonies’ morphology exhibits a transition from regular to platelike cells with the increase in cooling rate. Furthermore, the evolution of hardness as a function of the colony spacings is outlined. The highest hardness of 200 HV is related to an ultrafine bimodal structure formed by platelike eutectic colonies with 13 µm in spacing with very fine lamellae of 330 nm in spacing.


Eutectic Solidification Growth models Alloys Metals 



The authors are grateful to FAPESP (São Paulo Research Foundation, Brazil: Grant 2017/12741-6) and CNPq - National Council for Scientific and Technological Development for their financial support.


  1. 1.
    Stefanescu DM, Abbaschian GJ, Bayuzick RJ. Solidification processing of eutectic alloys. Warrendale: Metallurgical Society; 1988. ISBN 0873390334.Google Scholar
  2. 2.
    Campbell J. Castings. 2nd ed. Butterworth-Heinemann; 2003.Google Scholar
  3. 3.
    Silva BL, Garcia A, Spinelli JE. Complex eutectic growth and Bi precipitation in ternary Sn–Bi–Cu and Sn–Bi–Ag alloys. J Alloys Compd. 2017;691:600–5.CrossRefGoogle Scholar
  4. 4.
    Elliot R. Eutectic solidification. Int Met Rev. 1997;22:161–86.Google Scholar
  5. 5.
    Tiller WA. Liquid metals and solidification. Cleveland: ASM; 1958.Google Scholar
  6. 6.
    Reyes RV, Bello TS, Kakitani R, Costa TA, Garcia A, Cheung N, Spinelli JE. Tensile properties and related microstructures aspects of hypereutectic Al–Si alloys directionally solidified under different melt superheats and transient heat flow conditions. Mater Sci Eng A. 2017;685:235–43.CrossRefGoogle Scholar
  7. 7.
    Kaya H, Çadırlı E, Gündüz M, Ulgen A. Effect of the temperature gradient, growth rate, and the interflake spacing on the microhardness in the directionally solidified Al–Si eutectic alloy. J Mater Eng Perform. 2003;12:544–51.CrossRefGoogle Scholar
  8. 8.
    Hosch T, England LG, Napolitano RE. Analysis of the high growth-rate transition in Al–Si eutectic solidification. J Mater Sci. 2009;44:4892–9.CrossRefGoogle Scholar
  9. 9.
    Kakitani R, Reyes RV, Spinelli JE, Cheung N, Garcia A. Relationship between spacing of eutectic colonies and tensile properties of transient directionally solidified Al–Ni eutectic alloy. J Alloys Compd. 2018;733:59–68.CrossRefGoogle Scholar
  10. 10.
    Jackson KA, Hunt JD. Lamellar and rod eutectic growth. Trans Metall Soc AIME. 1966;236:1129–42.Google Scholar
  11. 11.
    Çadirli E, Ülgen A, Gündüz M. Directional solidification of the aluminium–copper eutectic alloy. Mater Trans JIM. 1999;40:989–96.CrossRefGoogle Scholar
  12. 12.
    Ourdjini A, Liu J, Elliott R. Eutectic spacing selection in Al–Cu system. Mater Sci Technol. 1994;10:312–8.CrossRefGoogle Scholar
  13. 13.
    Zimmermann M, Carrard M, Kurz W. Rapid solidification of Al–Cu eutectic alloy by laser remelting. Acta Metall. 1989;37:3305–13.CrossRefGoogle Scholar
  14. 14.
    Stoichev NV, Yaneva SB, Regel LL, Videnskiy IV. Eutectic solidification of Al–Cu alloys influenced by convection. Adv Space Res. 1988;8:171–4.CrossRefGoogle Scholar
  15. 15.
    Seetharaman V, Trivedi R. Eutectic growth: selection of interlamellar spacings. MTA. 1988;19:2955–64.CrossRefGoogle Scholar
  16. 16.
    Zimmermann M, Carrard M, Gremaud M, Kurz W. Characterization of the banded structure in rapidly solidified Al–Cu alloys. Mater Sci Eng A. 1991;134:1278–82.CrossRefGoogle Scholar
  17. 17.
    Yaneva S, Budurov S, Stoichev N, Chnistova S, Jonchev S. Eutectic crystallization of aluminium copper alloys (II). Influence of impurity elements. Kris Tech. 1975;10:395–400.CrossRefGoogle Scholar
  18. 18.
    Zimmermann M, Karma A, Carrard M. Oscillatory lamellar microstructure in off-eutectic Al–Cu alloys. Phys Rev B. 1990;42:833–7.CrossRefGoogle Scholar
  19. 19.
    Sahoo S, Ghosh S. Heat transfer, solidification, and microstructural evolution in Al–33Cu alloy during the starting of twin roll strip casting. Steel Res Int. 2014;85:207–18.CrossRefGoogle Scholar
  20. 20.
    Tiwary CS, Mahapatra DR, Chattopadhyay K. Effect of length scale on mechanical properties of Al–Cu eutectic alloy. Appl Phys Lett. 2012;101:171901.CrossRefGoogle Scholar
  21. 21.
    He G, Eckert J, Loser W, Schultz L. Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat Mater. 2003;2:33–7.CrossRefGoogle Scholar
  22. 22.
    Park JM, Kim KB, Kim DH, Mattern N, Li R, Liu G, Eckert J. Multi-phase Al-based ultrafine composite with multi-scale microstructure. Intermetallics. 2010;18:1829–33.CrossRefGoogle Scholar
  23. 23.
    Singh RK, Chattopadhyay K, Lele S, Anantharaman TR. Impact of substrate temperature on rapid solidification of an Al–Cu eutectic alloy. J Mater Sci. 1982;17:1617–22.CrossRefGoogle Scholar
  24. 24.
    Bertorello HR, Biloni H. Structure and heat treatment influence on the tensile properties of Al–Al2Cu eutectic composites. Metall Trans A. 1972;3:73–82.CrossRefGoogle Scholar
  25. 25.
    Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556.CrossRefGoogle Scholar
  26. 26.
    Kashyap S, Tiwary CS, Chattopadhyay K. Effect of gallium on microstructure and mechanical properties of Nb–Si eutectic alloy. Intermetallics. 2011;19:1943–52.CrossRefGoogle Scholar
  27. 27.
    Gunduz M, Çadirli E. Directional solidification of aluminium–copper alloys. Mater Sci Eng A. 2002;327:167–85.CrossRefGoogle Scholar
  28. 28.
    Çadirli E, Büyük U, Engin S, Kaya H. Effect of silicon content on microstructure, mechanical and electrical properties of the directionally solidified Al-based quaternary alloys. J Alloys Compd. 2017;694:471–9.CrossRefGoogle Scholar
  29. 29.
    Mondolfo LF. Aluminum alloys: structure and properties. London: Butterworth; 1976.Google Scholar
  30. 30.
    Mertinger V, Szabo G, Barczy P, Kovacs A, Czel G. Gravity influenced convection in Al–Ni melt. Mater Sci Forum. 1996;215(216):331–6.CrossRefGoogle Scholar
  31. 31.
    Juarez-Hernandez A, Jones H. Growth temperature measurements and solidification microstructure selection of primary Al3Ni and eutectic in the αAl–Al3Ni system. Scr Mater. 1998;38:729–34.CrossRefGoogle Scholar
  32. 32.
    Moura ITL, Silva CLM, Cheung N, Goulart PR, Garcia A, Spinelli JE. Cellular to dendritic transition during transient solidification of a eutectic Sn 07 wt% Cu solder alloy. Mater Chem Phys. 2012;132:203–9.CrossRefGoogle Scholar
  33. 33.
    Zhao S, Li J, Liu L, Zhou Y. Eutectic growth from cellular to dendritic form in the undercooled Ag–Cu eutectic alloy melt. J Cryst Growth. 2009;311:1387–91.CrossRefGoogle Scholar
  34. 34.
    Walder S, Rayder PL. Critical solidification behavior of undercooled Ag–Cu alloys. J Appl Phys. 1993;74:6100–6.CrossRefGoogle Scholar
  35. 35.
    Drevet B, Camel D, Dupuy M, Favier JJ. Microstructure of the Sn–Cu6Sn5 fibrous eutectic and its modification by segregation. Acta Mater. 1996;44:4071–84.CrossRefGoogle Scholar
  36. 36.
    Ventura T, Terzi S, Rappaz M, Dahle AK. Effects of solidification kinetics on microstructure formation in binary Sn–Cu solder alloys. Acta Mater. 2011;59:1651–8.CrossRefGoogle Scholar
  37. 37.
    Han SH. Stability of a eutectic interface during directional solidification. PhD thesis, Iowa State University; 1995.Google Scholar
  38. 38.
    Tewari N, Raj SV, Locci IE. A Comparison between growth morphology of eutectic cells/dendrites and single-phase cells/dendrites. Metall Mater Trans A. 2004;35:1632–5.CrossRefGoogle Scholar
  39. 39.
    Kurz W, Fisher DJ. Fundamentals of solidification. 3rd ed. Zurich: Trans Tech Publications; 1989.Google Scholar
  40. 40.
    Xu W, Feng YP, Li Y, Li ZY. Cellular growth of Zn-rich Zn–Ag alloys processed by rapid solidification. Mater Sci Eng A. 2004;373:139–45.CrossRefGoogle Scholar
  41. 41.
    Ma D, Li Y, Ng SC, Jones H. Unidirectional solidification of Zn-rich Zn–Cu peritectic alloys—II. Microstructural length scales. Acta Mater. 2000;48:1741–51.CrossRefGoogle Scholar
  42. 42.
    Vida A, Freitas ES, Brito C, Cheung N, Arenas MA, Conde A, Damborenea J, Garcia A. Thermal parameters and microstructural development in directionally solidified Zn-rich Zn-Mg alloys. Metall Mater Trans A. 2016;47:3052–64.CrossRefGoogle Scholar
  43. 43.
    Rocha OFL, Siqueira CA, Garcia CA. Heat flow parameters affecting dendrite spacings during unsteady-state solidification of Sn–Pb and Al–Cu alloys. Metall Mater Trans A. 2003;34:995–1006.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Manufacturing and Materials EngineeringUniversity of Campinas UNICAMPCampinasBrazil
  2. 2.Department of Materials EngineeringFederal University of São CarlosSão CarlosBrazil

Personalised recommendations