Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 1, pp 155–163 | Cite as

Thermoanalytical and NMR investigation of NaBH4 × 2H2O thermolysis process

  • I. V. ArkhangelskiiEmail author
  • V. P. Tarasov
  • O. V. Kravchenko
  • G. Kirakosyan
  • M. V. Tsvetkov
  • M. V. Solovev
  • Yu. A. Dobrovolskii
  • A. V. Shihovzev


The article describes the thermolysis process of sodium borohydride dihydrate in thermoanalytical experiments. The reaction was carried out without solid catalyst and with catalyst as cobalt boride Co2B. It has been found out that in both cases the process starts after the peritectic reaction of the starting compound and forms a liquid phase. The enthalpy of peritectic reaction is ΔHreact = 19 ± 2 kJ mol−1. When thermolysis proceeds in acetonitrile solution without a catalyst, intermediate hydroxyborohydride NaBH3OH or/and Na(BH3)2OH is formed according to the NMR experiment data. The formation of similar complexes in the solid phase is confirmed by experiments on the oxidation of the thermolysis products. Thermolysis process with solid catalyst proceeds with an intense exothermic effect at more lower temperatures. The kinetics of the non-catalytic process is described by the model of two consecutive reactions, and reaction with the solid catalyst model is approximated by two parallel reactions.


Sodium borohydride dihydrate Peritectic reaction NMR Thermal analysis Non-isothermal kinetic 



This work was supported by the RFBR under Grant No. 15 – 03 – 0750.


  1. 1.
    Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra H, Hyde RK. Sodium borohydride, its hydrolysis and its use as a reduction agent and in the generation of hydrogen. J Am Chem Soc. 1953;75:215–9.CrossRefGoogle Scholar
  2. 2.
    Orimo SI, Nakamori Y, Eliseo JR, Zuttel A, Jensen CM. Complex hydrides for hydrogen storage. Chem Rev. 2007;107(10):4111–32.CrossRefGoogle Scholar
  3. 3.
    Amendola SC, Sharp-Goldman SL, Janjua MS, Spencer NC, Kelly MT, Petillo PJ, Binder M. A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst. Int J Hydrog Energy. 2000;25(10):969–75.CrossRefGoogle Scholar
  4. 4.
    Marrero-Alfonso EY, Beaird AM, Davis TA, Matthews MA. Hydrogen generation from chemical hydrides. Ind Eng Chem Res. 2009;48:3703–12.CrossRefGoogle Scholar
  5. 5.
    Beaird AM, Davis TA, Matthews MA. Deliquescence in the hydrolysis of sodium borohydride by water vapor. Ind Eng Chem Res. 2010;49:4596–9.CrossRefGoogle Scholar
  6. 6.
    Yongsheng Wei Ru, Wang Liyuan Meng, Wang Yan, Li Guode, Xin Shigang, Zhao Xinsheng, Zhang Ke. Hydrogen generation from alkaline NaBH4 solution using a dandelion-like Co–Mo–B catalyst supported on carbon cloth. Int J Hydrog Energy. 2017;42(15):9945–51.CrossRefGoogle Scholar
  7. 7.
    Li Qiming, Li Fang, Zhao Shiduo, Xia Xin. Hydrogen generation from hydrolysis of NaBH4 based on high stable NiB/NiFe2O4 catalyst. Int J Hydrog Energy. 2017;42(7):3971–80.CrossRefGoogle Scholar
  8. 8.
    Simagina VI, Komova OV, Ozerova AM, Netskina OV, Odegova GV, Kellerman DG, Bulavchenko OA, Ishchenko AV. Cobalt oxide catalyst for hydrolysis of sodium borohydride and ammonia borane. Appl Catal A. 2011;394:86–92.CrossRefGoogle Scholar
  9. 9.
    Malceva NN, Khain VC. Sodium borohydride. Moscow: Nauka; 1985 (in Russian).Google Scholar
  10. 10.
    Filinchuk Y, Hagemann H. Structure and Properties of NaBH4·2H2O and NaBH4. Eur J Inorg Chem. 2008;20:3127–33.CrossRefGoogle Scholar
  11. 11.
    Marrero-Alfonso EY, Gray JR, Davis TA, Matthews MA. Minimizing water utilization in hydrolysis of sodium borohidride: the role of sodium metaborates hydrates. Int J Hydrog Energy. 2007;32:4723–30.CrossRefGoogle Scholar
  12. 12.
    Khain VC, Malceva NN, Volkov AA. Borohydrides of alkali metals and tetraalkylammonium. Ukhta: Ukhta State University; 2001 (in Russian).Google Scholar
  13. 13.
    Ruman T, Kushnierz A, Jurkiewicz A, Les A, Rode W. The synthesis, reactivity and 1H NMR investigation of the hydroxyborohydride anion. Inorg Chem Commun. 2007;10:1074–8.CrossRefGoogle Scholar
  14. 14.
    Arkhangelsky IV, Dunaev AV, Makarenko IV, Tikhonov NA, Belyaev SS, Tarasov AV. Non-isothermal kinetic methods. Berlin: Workbook and Laboratory Manual; 2013 (Edition Open Access).Google Scholar
  15. 15.
    Ozawa T. A new method of analyzing thermo gravimetric data. Bull Chem Soc Jpn. 1881;1965:38.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Chemical DepartmentMoscow State UniversityMoscowRussia
  2. 2.Institute General and Inorganic Chemistry RASMoscowRussia
  3. 3.Institute of Problems of Chemical Physics RASChernogolovkaRussia

Personalised recommendations