Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 1, pp 397–406 | Cite as

Preparation of PVA nanofibers reinforced with magnetic graphene by electrospinning method and investigation of their degradation kinetics using master plot analyses on solid state

  • Marzieh Noori
  • Fatemeh RavariEmail author
  • Morteza Ehsani


In this study, magnetic graphene nanoparticles have been prepared by Hummers method. The synthesized magnetic graphene nanoparticles were applied in the preparation of polyvinyl alcohol/magnetic graphene (PVA/Fe3O4/G) nanofibers by the electrospinning process. The prepared nanoparticles and nanofibers were characterized using the scanning electron microscopy (SEM), X-ray diffraction and Fourier Transform Infrared Spectroscopy. SEM measurements showed that addition of magnetic graphene to the solution of PVA decreases the diameter of fibers. The degradation kinetics of nanofibers was studied by thermogravimetric (TG) and differential thermogravimetric. TG results showed that the nanoparticles improve the thermal stability of the nanofibers. The activation energy was calculated by Vyazovkin method. Master plots are employed for the determination of the reaction models for solid-state reactions. The investigations showed that the experimental master curves are in better agreement with the theoretical master curve corresponding to the F1 mechanism.


Electrospinning Nanofibers Magnetic graphene Master plots Degradation kinetics 


  1. 1.
    Nain AS, Wong JC, Amon C, Sitti M. Drawing suspended polymer micro/nanofibers using glass micropipettes. J Appl Phys Lett. 2006;89:183105.CrossRefGoogle Scholar
  2. 2.
    Barzegar F, Bello A, Fabiane M, Khamlich S, Momodu D, Taghizadeh F, Dangbegnon J, Manyala N. Preparation and characterization of poly (vinylalcohol)/graphene nanofibers synthesized by electrospinning. J Phys Chem. 2015;77:139–45.Google Scholar
  3. 3.
    Jeong JS, Moon JS, Jeon SY, Park JH, Alegaonkar PS, Yoo JB. Mechanical properties of electrospun PVA/MWNTs composite nanofibers. J Thin Solid Films. 2007;515:5136–41.CrossRefGoogle Scholar
  4. 4.
    Rezaei A, Nasirpour A, Fathi M. Application of cellulosic nanofibers in food science using electrospinning and its potential risk. Compr Rev Food Sci Food Saf. 2015. Scholar
  5. 5.
    Frenot A, Chronakis IS. Polymer nanofibers assembled by electrospinning. Curr Opin Colloid Interface Sci. 2003;8:64–75.CrossRefGoogle Scholar
  6. 6.
    Xu Y, Hong W, Bai H, Li C, Shi G. Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. J Carbon. 2009;4:3538–43.CrossRefGoogle Scholar
  7. 7.
    Fasolino A, Los JH, Katsnelson MI. Intrinsic ripples in graphene. J Nat Mater. 2007;6:858–61.CrossRefGoogle Scholar
  8. 8.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC. Functionalized graphene sheets for polymer nanocomposites. J Nat Nanotechnol. 2008;3:327–31.CrossRefGoogle Scholar
  9. 9.
    Supaphol P, Chuangchote S. On the electrospinning of poly(vinyl alcohol) nanofiber mats: a revisit. J Appl Polym Sci. 2008;108:969–78.CrossRefGoogle Scholar
  10. 10.
    Ramalingam KJ, Dhineshbabu NR, Srither SR, Saravanakumar B, Yuvakkumar R, Rajendran V. Electrical measurement of PVA/graphene nanofibers for transparent electrode applications. J Synth Metals. 2014;191:13–119.Google Scholar
  11. 11.
    Ramis X, Salla JM, Puiggal J. Kinetic studies on the thermal polymerization of N-chloroacetyl-11-aminoundecanoate potassium salt. J Polym Sci Part A. 2005;43(6):1166–76.CrossRefGoogle Scholar
  12. 12.
    Cadenato A, Morancho JM, Fernández-Francos X, Sale JM, Ramis X. Comparative kinetic study of the non-isothermal thermal curing of bis-GMA/TEGDMA systems. J Therm Anal Calorim. 2007;89(1):233–44.CrossRefGoogle Scholar
  13. 13.
    Reddy DA, Choi J, Lee S, Ma R, Kim TK. Self-assembled macro porous ZnS–graphene aerogels for photocatalytic degradation of contaminants in water. RSC Adv. 2015;5:18342–51.CrossRefGoogle Scholar
  14. 14.
    Reddy DA, Choi J, Lee S, Ma R, Kim TK, Kim YJ, Hong S, Kumar DP, Kim TK. Hierarchical dandelion-flower-like cobalt-phosphide modified CdS/reduced graphene oxide-MoS2 nanocomposites as a noble-metal-free catalyst for efficient hydrogen evolution from water. J Catal Sci Technol. 2016;6:6197–206.CrossRefGoogle Scholar
  15. 15.
    Fu C, Zhao G, Zhang H, Li S. Evaluation and characterization of reduced graphene oxide nanosheets as anode materials for lithium-ion batteries. J Electrochem Sci. 2013;8:6269–80.Google Scholar
  16. 16.
    GhavamiNejad A, Hashmi S, Joh HI, Lee S, Lee YS, Vatankhah-Varnoosfaderani M, Stadler FJ. Network formation in graphene oxide composites with surface grafted PNIPAM chains in aqueous solution characterized by rheological experiments. J Phys Chem Chem Phys. 2014;16(18):8675–85.CrossRefGoogle Scholar
  17. 17.
    Wang C, Feng C, Gao Y, Ma X, Wu Q, Wang Z. Preparation of a graphene-based magnetic nanocomposite for the removal of an organic dye from aqueous solution. J Chem Eng. 2011;173:92–7.CrossRefGoogle Scholar
  18. 18.
    Gotor FJ, Criado JM, Malek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104:10777–82.CrossRefGoogle Scholar
  19. 19.
    Jankovi B. Kinetic analysis of the nonisothermal decomposition of potassium metabisulfite using the model-fitting and isoconversional (model-free) methods. J Chem Eng. 2008;139:128–35.CrossRefGoogle Scholar
  20. 20.
    Perez JM, Teixeira SR, Rincon MJ, Romero M. Understanding the crystallization mechanism of a wollastonite base glass using isoconversional, IKP methods and master plots. J Am Ceram Soc. 2012;2:1–2. Scholar
  21. 21.
    Guinesi LS, Cavalheiro ETG. Influence of the degree of substitution in biopolymeric Schiff bases on the kinetic of thermal decomposition by non-isothermal procedure. J Thermochim Acta. 2006;449:1–7.CrossRefGoogle Scholar
  22. 22.
    Vargeese AA. Pressure effects on the thermal decomposition reactions: a thermo-kinetic investigation. J Name. 2013;00:1–3.Google Scholar
  23. 23.
    Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.CrossRefGoogle Scholar
  24. 24.
    Omrani A, Ali Rostami A, Ravari F. Advanced isoconversional and master plot analyses on solid-state degradation kinetics of a novel nanocomposite. J Therm Anal Calorim. 2013;111:677–83.CrossRefGoogle Scholar
  25. 25.
    Omrani A, Ali Rostami A, Ravari F, Mashak A. Curing behavior and structure of a novel nanocomposite from glycerol diglycidyl ether and 3,3-dimethylglutaric anhydride. J Thermochim Acta. 2011;517:9–15.CrossRefGoogle Scholar
  26. 26.
    Senum GI, Yang RT. Rational approximations of the integral of the Arrhenius equation. J Therm Anal Calorim. 1977;11:445–7.CrossRefGoogle Scholar
  27. 27.
    Morancho JM, Cadenato A, Fernández-Francos X, Salla JM, Ramis X. Isothermal kinetics of photopolymerization and thermal polymerization of bis-GMA/TEGDMA resins. J Therm Anal Calorim. 2008;92(2):513–22.CrossRefGoogle Scholar
  28. 28.
    Sovizi MR, Fakhrpour G, Madram AR. Thermal degradation kinetic study of a fuel-rich energetic mixture containing epoxy binder. J Phys Chem Res. 2016;4(3):369–78.Google Scholar
  29. 29.
    Jusin JW, Aziz M, Sean GP, Jaafar J. Preparation and characterization of graphene-based magnetic hybrid nanocomposite. Malays J Anal Sci. 2016;20(1):149–56.CrossRefGoogle Scholar
  30. 30.
    Al-Sammarraie AMA, Raheema MH. Reduced graphene oxide coating for corrosion protection enhancement of carbon steel in sea water. Iraqi J Sci Spec Issue Part B. 2016;243–50.Google Scholar
  31. 31.
    Rauf A, Ahmad Shah SS, Khan A, Ahmad Shah SA, Kubra K, Ali A, Thebo KH. Synthesis of magnetic exfoliated graphene via one pot electroless chemical deposition method. Int J Sci Eng Res. 2016;7(3):632–8.Google Scholar
  32. 32.
    Nanoinnova Technologies SL. Reduced graphene oxide: characterization sheet. Accessed 10 April.
  33. 33.
    Yu YB, Kwak SY. Assembly of magnetite nanocrystals into spherical mesoporous aggregates with a 3-D wormhole-like pore structure. J Mater Chem. 2010. Scholar
  34. 34.
    Zhang FJ, Zhang Z, Xie FZ, Xuan H, Xia HC, Zhu L, Oh WC. Formation of magnetic graphene nanosheets for rapid enrichment and separation of methyl orange from water. J Korean Ceram Soc. 2014;51(6):570–4.CrossRefGoogle Scholar
  35. 35.
    Pham Q, Sharma U, Mikos AG. Electrospinning of polymeric nanofibers for tissue engineering applications. J Tissue Eng. 2006;12(5):1197–211.CrossRefGoogle Scholar
  36. 36.
    Beachley V, Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. J Mater Sci Eng C. 2009;29:663–8.CrossRefGoogle Scholar
  37. 37.
    Thoppey NM, Gorga RE, Bochinski JR, Clarke LI. Effect of solution parameters on spontaneous jet formation and throughput in edge electrospinning from a fluid-filled bowl. J Macromol. 2012;45:6527–37.CrossRefGoogle Scholar
  38. 38.
    Chowdhury M, Stylios G. Effect of experimental parameters on the morphology of electrospun nylon 6 fibres. J Basic Appl Sci IJBAS-IJENS. 2010;10(06):70–7.Google Scholar
  39. 39.
    Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. J Nanotechnol. 1996;7:216–23.CrossRefGoogle Scholar
  40. 40.
    Anbarasan R, Pandiarajaguru R, Prabhu R, Dhanalakshmi V, Jayalakshmi A, Dhanalakshmi B, Ulfath Nisha S, Gandhi S, Jayalakshmi T. Synthesis, characterizations, and mechanical properties of structurally modified poly (vinyl alcohol). J Appl Polym Sci. 2010;117:2059–68.CrossRefGoogle Scholar
  41. 41.
    Barzegar F. Synthesis and characterization of polymer/graphene electrospun nanofibers. 2010;117:2059–68. Accessed 19 Dec 2013.

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Iran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations