Journal of Thermal Analysis and Calorimetry

, Volume 134, Issue 1, pp 15–22 | Cite as

Study of the thermal decomposition of historical metal threads

  • Jose Luis Perez-Rodriguez
  • Rafael Perez-Maqueda
  • Maria Luisa Franquelo
  • Adrian Duran


In this work, it is reported that thermal analysis techniques such as differential thermal analysis and thermogravimetric analysis are very useful for evaluating metals threads and fibres used in the manufacture of historical artifacts. Thermal analysis has been used to characterize the silk, cotton and linen employed as supports and the copper, silver and aluminium as the metallic components in the studied threads. Other organic compounds, mainly added for the conservation of the threads, have also been characterized.


Historical metal threads Metals (Ag, Cu, Al) Cellulosic (linen and cotton) and animal (silk) fibres Organic dyes and mordant Degradation TG–DTG–DTA 



The samples were provided by two embroiderers, Fernando Enríquez Morán [] and Eva Díaz Melero, and by Juan Antonio Conde and Antonio Albardonedo (private collections). Samples were collected to aid in the restoration processes of the artwork. The financial support of the Spanish Commission Interministerial of “Economia y Competitividad” (Plan Estatal 2013–2016 Retos–Proyectos I+D+i) under Project BIA2014-55318-R is also acknowledged.


  1. 1.
    Braun-Ronsdorf M. Gold and silver fabrics from medieval to modern times. CIBA Rev. 1961;3:2–16.Google Scholar
  2. 2.
    Jaro M. Gold embroidery and fabrics in Europe, XI–XIV centuries. Gold Bull. 1990;23(2):40–57.CrossRefGoogle Scholar
  3. 3.
    Jaro M, Toth A. Scientific identification of European metal thread manufacturing techniques of the 17–19th centuries. Endeavour, New Series. 1991;15(4):175–84.CrossRefGoogle Scholar
  4. 4.
    Indictor N, Koestler RJ, Wypyski M, Wardwell AE. Metal threads made of proteinaceous substrates examined by scanning electron microscopy-energy dispersive X-ray spectrometry. Stud Conserv. 1989;34(4):171–82.Google Scholar
  5. 5.
    Theile, J.M., Guarda, S.O.S., Croquevielle, E., Analysis, conservation and restoration of the metal threads used in Latin American colonial Saints’ robes. In: Proceedings of metal. National Museum of Australia Canberra, Australia; 2004. p. 501–13.Google Scholar
  6. 6.
    Geba M, Lisa G, Ursescu CM, Olaru A, Spiridon I, Leon AL, Stanculescu I. Gamma irradiation of protein-based textiles for historical collections decontamination. J Therm Anal Calorim. 2014;118:977–85.CrossRefGoogle Scholar
  7. 7.
    Tian CM, Shi ZH, Zhang HY, Xu JZ, Shi JR, Guo HZ. Thermal degradation of cotton cellulose. J Therm Anal Calorim. 1999;55(1):93–8.CrossRefGoogle Scholar
  8. 8.
    Bledzki AK. Gassen J (1997) Natural fiber reinforce plastics. In: Cheremisinoff NP, editor. Handbook of engineering polymeric materials. New York: Marcel Dekker Inc.; 1997. p. 810.Google Scholar
  9. 9.
    Shi R, Tan L, Zong L, Ji Q, Li X, Zhang K, Cheng L, Xia Y. Influence of Na+ and Ca2+ on flame retardancy, thermal degradation, and pyrolysis behaviour of cellulose fibers. Carbohydr Polym. 2017;157:1594–603.CrossRefGoogle Scholar
  10. 10.
    Xu W, Guo W, Li W. Thermal analysis of ultrafine wool powder. J Appl Polym Sci. 2003;87:2372–6.CrossRefGoogle Scholar
  11. 11.
    Seonaid MR. Dyes from plants. New York: Litton Educational Publishing Inc.; 1973. p. 32–4.Google Scholar
  12. 12.
    Ibrahim SF, El-Amoudy ES, Shady KE. Thermal analysis and characterization of some cellulosic fabrics dyed by a new natural dye and mordanted with different mordants. Int J Chem. 2011;3(2):40–54.CrossRefGoogle Scholar
  13. 13.
    Jaro M, Gal T, Toth A. The characterization and deterioration of modern metallic threads. Stud Conserv. 2000;45(2):95–105.CrossRefGoogle Scholar
  14. 14.
    Ferrero F, Testore F, Malucelli G, Tonin C. Thermal degradation of linen textiles: the effects of ageing and cleaning. J Text Inst. 1998;89(3):562–8.CrossRefGoogle Scholar
  15. 15.
    Calamari TA, Donaldson DJ, Thibodeaux DP. Distinguishing weathered from unweathered cotton by thermal analysis. Am Dyest Report. 1990;79(7):42–7.Google Scholar
  16. 16.
    Jiang S, Cao G, Cai G, Xu W, Li W, Wang X. Unidirectional torsion properties of single silk fibre. Fibres Text East Eur. 2016;24(3):26–30.CrossRefGoogle Scholar
  17. 17.
    Felix WD, McDowell MA, Eyring H. The differential thermal analysis of natural and modified wool and mohair. Text Res J. 1963;33(6):465–70.CrossRefGoogle Scholar
  18. 18.
    Sadhir RK, Bajaj P, Singh VP. Effect of oxidizing and reducing agents on indian wools: part III-thermal behaviour. Indian J Fibre Text Res. 1980;5:53–6.Google Scholar
  19. 19.
    Hatakeyama T, Lui Z. Handbook of thermal analysis. Hoboken: Wiley; 1998. p. 470.Google Scholar
  20. 20.
    Espejo T, Duran A, Lopez-Montes A, Blanc R. Microscopic and spectroscopic techniques for the study of paper supports and textile used in the binding of hispano-arabic manuscripts from Al-Andalus: a transition model in the 15th century. J Cult Herit. 2010;11:50–8.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Jose Luis Perez-Rodriguez
    • 1
  • Rafael Perez-Maqueda
    • 2
  • Maria Luisa Franquelo
    • 1
  • Adrian Duran
    • 3
  1. 1.Materials Science Institute of SevilleCSIC-Seville UniversitySevilleSpain
  2. 2.Technical Architecture FacultyUniversity of SevilleSevilleSpain
  3. 3.University of NavarraDepartment of Chemistry, School of SciencesPamplonaSpain

Personalised recommendations