Advertisement

Journal of Thermal Analysis and Calorimetry

, Volume 132, Issue 1, pp 127–142 | Cite as

Thermal and combustion behavior of novel oxygen-rich energetic pyrazoles

  • Valery V. Serushkin
  • Valery P. SinditskiiEmail author
  • Trung H. Hoang
  • Sergey A. Filatov
  • Anna S. Shipulina
  • Igor L. Dalinger
  • Aleksander Kh. Shakhnes
  • Aleksey B. Sheremetev
Article

Abstract

Physicochemical properties, such as thermal decomposition, burning behavior, and flame structure of low-melting oxygen-rich energetic N-trinitromethyl-3,4-dinitropyrazole (1), N-trinitromethyl-3,5-dinitropyrazole (2), N-flurodinitromethyl-3,5-dinitropyrazole (3), and N-[(difluoroamino)dinitromethyl]-3,5-dinitropyrazole (4), have been studied. It has been found that the stability of N-trinitromethyl azoles is relatively higher than stability of similar C-trinitromethyl heterocycles. Replacing one nitro group in the trinitromethyl moiety with fluorine or difluoroamine group changes the C–NO2 bond length and the thermal stability. However, there is no linear correlation between the rate constants and the C–NO2 bond length, which indicates the presence of other factors affecting the stability of trinitro- and substituted dinitromethyl derivatives. The burning rates of the nitropyrazoles varied from 26.8 mm s−1 (for 1) to 77.5 mm s−1 (for 4) at 10 MPa. An analysis of thermocouple data shows that the burning rate of nitropyrazoles 1, 2, and 4 depends on the rate of heat release in the condensed phase. The increased stability of the fluorodinitromethyl compound 3 causes a decrease in the depth of its decomposition in the melt and shifts the leading reaction of its combustion into the gas phase.

Graphical Abstract

Two-stage decomposition is stipulated by different thermal stabilities of the substituent and the dinitropyrazole fragment

Keywords

Decomposition kinetics N-trinitromethyl-3,4-dinitropyrazole N-trinitromethyl-3,5-dinitropyrazole N-flurodinitromethyl-3,5-dinitropyrazole N-[(difluoroamino)dinitromethyl]-3,5-dinitropyrazole Combustion Vapor pressure 

Notes

Acknowledgements

The authors are grateful to Dr. N. N. Ilicheva and Dr. N. N. Kondakova (MUCT) for taking DSC and TGA measurements and Dr. N. V. Yudin (MUCT) for taking LC–MS measurements. The work was supported by the Russian Science Foundation (Project No. 14-13-01153).

References

  1. 1.
    Tang Y, He C, Mitchell LA, Parrish DA, Shreeve JM. C–N bonded energetic biheterocyclic compounds with good detonation performance and high thermal stability. J Mater Chem A. 2016;4(10):3879–85.CrossRefGoogle Scholar
  2. 2.
    Larina L, Lopyrev V. Nitroazoles: synthesis, structure and applications. New York: Springer LLC; 2009.CrossRefGoogle Scholar
  3. 3.
    Makhova NN, Kulikov AS. Advances in the chemistry of monocyclic amino- and nitrofuroxans. Russ Chem Rev. 2013;82:1007–33.CrossRefGoogle Scholar
  4. 4.
    Yin P, Shreeve JM. Nitrogen-rich azoles as high density energy materials: reviewing the energetic footprints of heterocycles. Adv Heterocycl Chem. 2017;121:89–131.CrossRefGoogle Scholar
  5. 5.
    Kettner MA, Klapötke TM. Synthesis of new oxidizers for potential use in chemical rocket propulsion. In: De Luca L, Shimada T, Sinditskii VP, Calabro M, editors. Chemical rocket propulsion. Berlin: Springer; 2017. p. 89–125.Google Scholar
  6. 6.
    Sheremetev AB, Yudin IL, Palysaeva NV, Suponitsky KY. The synthesis of 4-(3-nitrofurazan-4-yl)-3,5-dinitropyrazole and its salts. J Heterocycl Chem. 2012;49(2):394–401.CrossRefGoogle Scholar
  7. 7.
    Dalinger IL, Vatsadze IA, Shkineva TK, Popova GP, Shevelev SA, Nelyubina YV. Synthesis and comparison of the reactivity of 3,4,5-1H-trinitropyrazole and it’s N-methyl derivative. J Heterocycl Chem. 2013;59:911–24.CrossRefGoogle Scholar
  8. 8.
    Pagoria P. A comparison of the structure, synthesis, and properties of insensitive energetic compounds. Prop Explos Pyrotech. 2016;41(3):452–69.CrossRefGoogle Scholar
  9. 9.
    Shevelev SA, Dalinger IL. Advances in the nitropyrazole chemistry. Zh Org Khim. 1998;34:1127–36 [Russ J Org Chem. 1998;34(8):1071–180 (Engl. Transl.)].Google Scholar
  10. 10.
    Zaitsev AA, Dalinger IL, Shevelev SA. Dinitropyrazoles. Usp Khim. 2009;78: 643 [Russ Chem Rev. 2009;78:589–627 (Engl. Transl.)].Google Scholar
  11. 11.
    Dalinger IL, Vatsadze IA, Shkineva TK, Kormanov AV, Struchkova MI, Suponitsky KY, Bragin AA, Monogarov KA, Sinditskii VP, Sheremetev AB. Novel highly energetic pyrazoles: N-trinitromethyl-substituted nitropyrazoles. Chem Asian J. 2015;10:1987–96.CrossRefGoogle Scholar
  12. 12.
    Dalinger IL, Shakhnes AK, Monogarov KA, Suponitsky KY, Sheremetev AB. Novel high energetic pyrazoles: N-fluorodinitromethyl and N-(difluoroamino)dinitromethyl derivatives. Mendeleev Commun. 2015;25(6):429–31.CrossRefGoogle Scholar
  13. 13.
    Lempert DB, Sheremetev AB, Shu YJ, Dalinger IL, Kazakov AI. Energy opportunities of dinitroderivatives of 1-(trinitromethyl)-1H-pyrazoles as possible oxidizers for solid composite propellants. In: Proc. “New Trends in Research of Energetic Materials”, 2016; Part II. p. 726–34.Google Scholar
  14. 14.
    Lempert DB, Dalinger IL, Shu YJ, Kazakov AI, Sheremetev AB. Estimation of the ballistic effectiveness of 3,4-and 3,5-dinitro-1-(trinitromethyl)-1H-pyrazoles as oxidizers for composite solid propellants. Chin J Explos Propell. 2016;39(2):16–21.Google Scholar
  15. 15.
    Ravi P, Badgujar DM, Gore GM, Tewari SP, Sikder AK. Review on melt cast explosives. Prop Explos Pyrotech. 2011;36(5):393–403.CrossRefGoogle Scholar
  16. 16.
    Kumari D, Balakshe R, Banerjee S, Singh H. Energetic plasticizers for gun & rocket propellants. Rev J Chem. 2012;2(3):240–62.CrossRefGoogle Scholar
  17. 17.
    Sinditskii VP, Burzhava AV, Sheremetev AB, Aleksandrova NS. Thermal and combustion properties of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF). Prop Explos Pyrotech. 2012;37(5):575–80.CrossRefGoogle Scholar
  18. 18.
    Sinditskii VP, Burzhava AV, Chernyi AN, Shmelev DS, Apalkova VN, Palysaeva NV, Sheremetev AB. A comparative study of two difurazanyl ethers. J Therm Anal Calor. 2016;123(2):1431–8.CrossRefGoogle Scholar
  19. 19.
    Son SF, Berghout HL, Bolme CA, Chavez DE, Naud DL, Hiskey MA. Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz. Proc Comb Inst. 2000;28:919–24.CrossRefGoogle Scholar
  20. 20.
    Sinditskii VP, Egorshev VY, Rudakov GF, Filatov SA, Burzhava AV. High-nitrogen energetic materials of 1,2,4,5-tetrazine family: thermal and combustion behaviors. In: De Luca L, Shimada T, Sinditskii VP, Calabro M, editors. Chemical rocket propulsion. Berlin: Springer; 2017. p. 89–125.CrossRefGoogle Scholar
  21. 21.
    Sinditskii VP, Filatov SA, Kolesov VI, Kapranov KO, Asachenko AF, Nechaev MS, Lunin VV, Shishov NI. Combustion behavior and physico-chemical properties of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Thermochim Acta. 2015;614:85–92.CrossRefGoogle Scholar
  22. 22.
    Ali AN, Son SF, Hiskey MA, Naud DL. Novel high nitrogen propellant use in solid fuel micropropulsion. J Prop Power. 2004;20(1):120–6.CrossRefGoogle Scholar
  23. 23.
    Serushkin VV, Sinditskii VP, Egorshev VY, Filatov SA. Combustion mechanism of triaminoguanidine nitrate. Prop Explos Pyrotech. 2013;38(3):345–50.CrossRefGoogle Scholar
  24. 24.
    Chavez DE, Tappan BC, Hiskey MA, Son SF, Harry H, Montoya D, Hagelberg S. New high-nitrogen materials based on nitroguanyl-tetrazines: explosive properties, thermal decomposition and combustion studies. Prop Explos Pyrotech. 2005;30(6):412–7.CrossRefGoogle Scholar
  25. 25.
    Sinditskii VP, Egorshev VY, Rudakov GF, Burzhava AV, Filatov SA, Sang LD. Thermal behavior and combustion mechanism of high-nitrogen energetic materials DHT and BTATz. Thermochim Acta. 2012;535:48–57.CrossRefGoogle Scholar
  26. 26.
    Fogelzang AE, Adzhemian VJ, Svetlov BS. Investigation of combustion of lead salts of nitrocarbonic acids and nitroparaffins. Dokl Akad Nauk SSSR. 1977;236(3):688–91.Google Scholar
  27. 27.
    Atwood AI, Boggs TL, Curran PO, Parr TP, Hanson-Parr D, Price CF, Wiknich J. Burning rate of solid propellant ingredients. Part 1: pressure and initial temperature effects. J Prop Power. 1999;15(6):740–7.CrossRefGoogle Scholar
  28. 28.
    Sinditskii VP, Serushkin VV, Filatov SA, Egorshev VY. Flame structure of hydrazinium nitroformate. Int J Energ Mater Chem Prop. 2002;5(1–6):576–86.Google Scholar
  29. 29.
    Sheremetev AB, Korolev VL, Potemkin AA, Aleksandrova NS, Palysaeva NV, Hoang TH, Sinditskii VP, Suponitsky KY. Oxygen-rich 1,2,4-triazolo[3,4-d]-1,2,4-triazolo[3,4-f]furazano[3,4-b] pyrazines as energetic materials. Asian J Org Chem. 2016;5(11):1388–97.CrossRefGoogle Scholar
  30. 30.
    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.CrossRefGoogle Scholar
  31. 31.
    Miroshnichenko EA, Korchatova LI, Shelaputina VP, Zyuz’kevich SA, Lebedev YA. Thermochemistry of glyceryl trinitrate. Russ Chem Bull. 1988;37(9):1778–81.CrossRefGoogle Scholar
  32. 32.
    Andreev KK. Thermal decomposition and combustion of explosives. Moscow, Nauka; 1969 (No. FTD-HT-23-1329-68, Foreign Technology Div Wright-Patterson AFB OH).Google Scholar
  33. 33.
    Belov GB. Thermodynamic analysis of combustion products at high temperature and pressure. Prop Explos Pyrotech. 1998;23:86–9.CrossRefGoogle Scholar
  34. 34.
    Fogelzang AE, Egorshev VY, Sinditskii VP, Dutov MD. Combustion of nitroderivatives of azidobenzenes and benzofuroxans. Comb Flame. 1991;87:123–35.CrossRefGoogle Scholar
  35. 35.
    Sinditskii VP, Egorshev VY, Berezin MV, Serushkin VV. Mechanism of HMX combustion in a wide range of pressures. Comb Explos Shock Waves. 2009;45(4):461–77.CrossRefGoogle Scholar
  36. 36.
    Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA. Combustion of energetic materials governed by reactions in the condensed phase. Int J Ener Mater Chem Prop. 2010;9(2):147–92.  https://doi.org/10.1615/intjenergeticmaterialschemprop.v9.i2.30.Google Scholar
  37. 37.
    Sinditskii VP, Egorshev VY, Berezin MV, Serushkin VV, Mileykhin YM, Gusev SA, Matveev AA. Combustion behavior and mechanism of high-energy caged nitramine hexanitrohexaazaisowurtzitane. Zh Khim Fiz. 2003;22(7):69–74.Google Scholar
  38. 38.
    Andreev KK. Experimental investigation on combustion of explosives. In: Collection of articles on theory of explosives. Moscow: Oborongiz; 1940. p. 39–65.Google Scholar
  39. 39.
    Pleshakov DV, Lotmentsev YM. Prediction of thermodynamic conditions for nitroester vapor condensation on the surfaces of process apparatus during the production of energetic materials. In: Proceedings of VII Seminar «New trends in research of energetic materials», Pardubice, Czech Republic; 2004. p. 591–99.Google Scholar
  40. 40.
    Sinditskii VP, Smirnov SP, Egorshev VY, Chernyi AN, Shkineva TK, Palysaeva NV, Suponitsky KY, Dalinger IL. Thermal decomposition peculiarities and combustion behavior of nitropyrazoles. Thermochim Acta. 2017;651:83–99.  https://doi.org/10.1016/j.tca.2017.02.019.CrossRefGoogle Scholar
  41. 41.
    Dubikhin VV, Nazin GM, Prokudin VG, Aliev ZG, Vatsadze IA, Shevelev SA, Dalinger IL. Kinetics and mechanism of thermal decomposition of nitropyrazoles. Russ Chem Bull. 2015;64(1):127–31.CrossRefGoogle Scholar
  42. 42.
    Bragin A, Pivkina A, Muravyev N, Monogarov K, Gryzlova O, Shkineva T, Dalinger I. Thermal decomposition of nitropyrazoles. Phys Procedia. 2015;72:358–61.CrossRefGoogle Scholar
  43. 43.
    Stepanov RS, Kruglyakova LA, Astakhov AM. Structural and kinetic regularities of thermal decomposition of gem-trinitromethylazoles in the liquid phase. Russ J Gen Chem. 2007;77(11):1933–8.CrossRefGoogle Scholar
  44. 44.
    Afanasiev AG, Lur’e BA, Svetlov BS. Effect of the chemical structure of some nitro esters on the nature of their thermal decomposition. In: Theory of explosives. Moscow: Vysshaya Shkola; 1967. p. 63–75.Google Scholar
  45. 45.
    Sinditskii VP, Egorshev VY, Berezin MV. Combustion of energetic cyclic nitramines. Zh Khim Fiz. 2003;22(4):53–60.Google Scholar
  46. 46.
    Nazin GM, Prokudin VG, Dubikhin VV, Aliev ZG, Zbarskii VL, Yudin NV, Shastin AV. Relation between the N-NO2 bond length and stability of the secondary nitramines. Zh Obshchei Khim. 2013;83(6):940–45 [Russ J Gen Chem. 2013; 83(6):1071–76].Google Scholar
  47. 47.
    Nazin GM, Manelis GB, Rubtsov YI, Strunin VA. Thermal decomposition and combustion of explosives and propellants. Boca Raton: CRC Press; 2003.Google Scholar
  48. 48.
    Janssen JWAM, Koeners HJ, Kruse CG, Habrakern CL. Pyrazoles. XII. Preparation of 3 (5)-nitropyrazoles by thermal rearrangement of N-nitropyrazoles. J Org Chem. 1973;38(10):1777–82.CrossRefGoogle Scholar
  49. 49.
    Sinditskii VP, Egorshev VY, Serushkin VV, Filatov SA. Combustion of energetic materials controlled by condensed-phase reactions. Fizika Gorenia i Vzryva. 2012;48(1):89–109 [Comb Expl Shock Waves. 2012;48(1):81–99 (Engl. Transl.)].Google Scholar
  50. 50.
    Sinditskii VP, Egorshev VY, Serushkin VV, Levshenkov AI, Berezin MV, Filatov SA, Smirnov SP. Evaluation of decomposition kinetics of energetic materials in the combustion wave. Thermochim Acta. 2009;496(1–2):1–12.  https://doi.org/10.1016/j.tca.2009.07.004.CrossRefGoogle Scholar
  51. 51.
    Zeldovich YB. Theory of combustion of propellants and explosives. Zh Eksper Teoret Fiziki. 1942;12(11–12):498–524.Google Scholar
  52. 52.
    Sinditskii VP. On the nature of the burning rate-controlling reaction of energetic materials for the gas-phase model. Fizika Gorenia i Vzryva. 2007;43(3):59–71 [Comb Explos Shock Waves. 2007;43(3):297–308 (Engl. Transl.)].Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2017

Authors and Affiliations

  • Valery V. Serushkin
    • 1
  • Valery P. Sinditskii
    • 1
    Email author
  • Trung H. Hoang
    • 1
  • Sergey A. Filatov
    • 1
  • Anna S. Shipulina
    • 1
  • Igor L. Dalinger
    • 2
  • Aleksander Kh. Shakhnes
    • 2
  • Aleksey B. Sheremetev
    • 2
  1. 1.Mendeleev University of Chemical TechnologyMoscowRussia
  2. 2.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations